Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped
-
E. A. Volkov
Veröffentlicht/Copyright:
2004
We present and justify difference schemes for obtaining the solution of the Dirichlet problem, its first derivatives and pure second derivatives on a cubic grid with uniform accuracy O (h2), h is a grid step. We propose a method for finding a mixed derivative with accuracy O (h2/ (ρ + h)), where ρ is the distance from a current mesh node to the boundary of a parallelepiped.
Published Online: --
Published in Print: 2004-06-01
Copyright 2004, Walter de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Preface
- Iterative processes for some boundary value problems of hydrodynamics
- New Monte Carlo global weight method for the approximate solution of the nonlinear Boltzmann equation
- Numerical solution of the ocean data assimilation problem
- On construction of the stable permutations of parameters for the Chebyshev iterative methods. Part II
- The regularly structured pseudospectrum
- On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped
Artikel in diesem Heft
- Preface
- Iterative processes for some boundary value problems of hydrodynamics
- New Monte Carlo global weight method for the approximate solution of the nonlinear Boltzmann equation
- Numerical solution of the ocean data assimilation problem
- On construction of the stable permutations of parameters for the Chebyshev iterative methods. Part II
- The regularly structured pseudospectrum
- On the grid method for approximating the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped