Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On the mean complexity of monotone functions
-
R. N. Zabaluev
Veröffentlicht/Copyright:
1. März 2006
We consider the complexity of realisation of the monotone functions by straight-line programs with conditional stop. It is shown that the mean complexity of each monotone function of n variables does not exceed a2n/n2 (1 + o(1)) as n → ∞, and the mean complexity of almost all monotone functions of n variables is at least b2n/n2 (1 + o(1)) as n → ∞, where a and b are constants.
Published Online: 2006-03-01
Published in Print: 2006-03-01
Copyright 2006, Walter de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Testing numbers of the form N = 2kpm − 1 for primality
- On a two-dimensional binary model of a financial market and its extension
- Stochastic optimality in the problem on linear regulator perturbed by a sequence of dependent random variables
- On large deviations of branching processes in a random environment: geometric distribution of descendants
- A random algorithm for multiselection
- On the mean complexity of monotone functions
- On reliability of circuits over the basis {x ∨ y ∨ z, x & y & z, } under single-type constant faults at inputs of elements
Artikel in diesem Heft
- Testing numbers of the form N = 2kpm − 1 for primality
- On a two-dimensional binary model of a financial market and its extension
- Stochastic optimality in the problem on linear regulator perturbed by a sequence of dependent random variables
- On large deviations of branching processes in a random environment: geometric distribution of descendants
- A random algorithm for multiselection
- On the mean complexity of monotone functions
- On reliability of circuits over the basis {x ∨ y ∨ z, x & y & z, } under single-type constant faults at inputs of elements