Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Testing numbers of the form N = 2kpm − 1 for primality
-
E. V. Sadovnik
Veröffentlicht/Copyright:
1. März 2006
We suggest an algorithm to test numbers of the form N = 2kpm − 1 for primality, where 2k < pm, k is an odd positive integer, 2k < pm, p is a prime number, and p = 3 (mod 4). The algorithm makes use of the Lucas functions. First we present an algorithm to test numbers of the form N = 2k3m − 1. Then the same technique is used in the more general case where N = 2kpm − 1. The algorithms suggested here are of complexity O((log N)2 log log N log log log N).
Published Online: 2006-03-01
Published in Print: 2006-03-01
Copyright 2006, Walter de Gruyter
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Testing numbers of the form N = 2kpm − 1 for primality
- On a two-dimensional binary model of a financial market and its extension
- Stochastic optimality in the problem on linear regulator perturbed by a sequence of dependent random variables
- On large deviations of branching processes in a random environment: geometric distribution of descendants
- A random algorithm for multiselection
- On the mean complexity of monotone functions
- On reliability of circuits over the basis {x ∨ y ∨ z, x & y & z, } under single-type constant faults at inputs of elements
Artikel in diesem Heft
- Testing numbers of the form N = 2kpm − 1 for primality
- On a two-dimensional binary model of a financial market and its extension
- Stochastic optimality in the problem on linear regulator perturbed by a sequence of dependent random variables
- On large deviations of branching processes in a random environment: geometric distribution of descendants
- A random algorithm for multiselection
- On the mean complexity of monotone functions
- On reliability of circuits over the basis {x ∨ y ∨ z, x & y & z, } under single-type constant faults at inputs of elements