We compare two prominent approaches to capital allocation in insurance firms. The financial theory approach includes Merton and Perold (1993) and Myers and Read (2001). The cooperative game theory approach utilizes concepts such as the Shapley value and the Aumann-Shapley value. We argue that, when an entire division is added or when the effect of a decision is discrete, the Shapley value approach provides an improvement over the Merton and Perold approach in that it properly accounts for the order in which divisions are added, and resoles the unallocated capital problem. When the effect of a decision is continuous, we show that the Auman-Shapley value approach not only provides game theoretic support for, but also conceptually extends, the Myers and Read approach.
Contents
- Featured Article
-
Requires Authentication UnlicensedComparison between Financial Theory and Cooperative Game Theory in Risk Capital AllocationLicensedNovember 1, 2009
-
Requires Authentication UnlicensedThe Dynamic Interactions between Risk Management, Capital Management, and Financial Management in the U.S. Property/Liability Insurance IndustryLicensedNovember 1, 2009
-
Requires Authentication UnlicensedThe Effects of Economies of Scale and Diversification on the Cost Structure of the Malaysian Non-life Insurance IndustryLicensedNovember 1, 2009
-
Requires Authentication UnlicensedEffects of Disability-Based Underwriting Prohibitions on the Labor MarketLicensedNovember 1, 2009
-
Requires Authentication UnlicensedThe Cost of Delay in a Mortgage/Credit Loan PortfolioLicensedNovember 1, 2009
- Commentary Piece
-
Requires Authentication UnlicensedSome Comments on Catastrophe Risk Management and InsuranceLicensedNovember 1, 2009