Abstract
A Ni-25Al-25Cr (at.%) alloy was directionally solidified under Ar atmosphere in an Al2O3 – SiO2 ceramic mold by the standard Bridgman method. The microstructure of the as-fabricated alloy was studied using optical microscopy, X-ray diffraction and scanning electron microscopy. The alloy was composed of β-NiAl dendritic arms, α-Cr interdendritic regions, fine α-Cr particles in the dendritic arms, and β-NiAl + α-Cr eutectic in the interdendritic regions. The mechanical properties were studied by tensile tests in the temperature range 1123–1373 K. The results showed that the alloy exhibits superplastic behavior at appropriate testing conditions. The balance between work hardening (by dislocation glide) and work softening (by dynamic recovery and recrystallization) is responsible for the large tensile elongation of the alloy.
References
[1] M. de Jong, G.W. Rathenau: Acta Metall. 9 (1961) 714.10.1016/0001-6160(61)90101-8Search in Google Scholar
[2] P. Zwigl, D.C. Dunand: Metall. Trans. A29 (1998) 565.10.1007/s11661-998-0138-6Search in Google Scholar
[3] D.C. Dunand, C.M. Bedell: Acta Metall. 44 (1996) 1063.Search in Google Scholar
[4] D. Oelschlagel, V. Weiss: Trans. ASM 59 (1966) 143.Search in Google Scholar
[5] R.C. Lobb, E.C. Sykes, R.H. Johnson: Met. Sci. 6 (1972) 33.10.1179/030634572790445876Search in Google Scholar
[6] M.Y. Wu, O.D. Sherby: Scripta Metall. 18 (1984) 773.10.1016/0036-9748(84)90392-2Search in Google Scholar
[7] K. Kitazono, E. Sato: Acta Mater. 46 (1998) 207.10.1016/S1359-6454(97)00216-4Search in Google Scholar
[8] K. Kitazono, E. Sato: Acta Mater. 47 (1999) 135.10.1016/S1359-6454(98)00326-7Search in Google Scholar
[9] K. Kitazono, E. Sato, K. Kuribayashi: Scripta Mater. 41 (1999) 263.10.1016/S1359-6462(99)00157-8Search in Google Scholar
[10] M.Y. Wu, J. Wadsworth, O.D. Sherby: Metall. Trans. A 18 (1987) 451.10.1007/BF02648806Search in Google Scholar
[11] S.M. Pickard, B. Derby: Scripta Metall. Mater. 25 (1991) 467.10.1016/0956-716X(91)90212-JSearch in Google Scholar
[12] K. Kitazono, R. Hirasaka, E. Sato, K. Kuribayashi, T. Motegi: Acta Mater. 49 (2001) 473.10.1016/S1359-6454(00)00336-0Search in Google Scholar
[13] T.G. Nieh, J. Wadsworth: Int. Mater. Rev. 44 (2) (1999) 59.10.1179/095066099101528225Search in Google Scholar
[14] R.L. Coble: J. Appl. Phys. 34 (1964) 1679.10.1063/1.1702656Search in Google Scholar
[15] M.F. Ashby, R.A. Verrall: Acta Metall. 21 (1973) 149.10.1016/0001-6160(73)90057-6Search in Google Scholar
[16] A. Ball, M.M. Hutchinson: Met. Sci. J. 3 (1969) 1.10.1179/msc.1969.3.1.1Search in Google Scholar
[17] T.G. Langdon: Philos. Mag. A22 (1970) 689.10.1080/14786437008220939Search in Google Scholar
[18] A.K. Mukherjee: Mater. Sci. Eng. 8 (1971) 83.10.1016/0025-5416(71)90085-1Search in Google Scholar
[19] D.Q. Li, A.D. Shan, Y. Liu, D.L. Lin: Scripta Metall. Mater. 33 (1995) 681.10.1016/0956-716X(95)00283-2Search in Google Scholar
[20] D.Q. Li, D.L. Lin: Scripta Metall. Mater. 36 (1997) 1289.10.1016/S1359-6462(97)00021-3Search in Google Scholar
[21] D.L. Lin, A.D. Shan, D.Q. Li: Scripta Metall. Mater. 31 (1994) 1455.10.1016/0956-716X(94)90055-8Search in Google Scholar
[22] X.H. Du, J.T. Guo, B.D. Zhou: Scripta Mater. 45 (2001) 69.10.1016/S1359-6462(01)00993-9Search in Google Scholar
[23] T. Takasugi, J. Kishino, S. Hanada: Acta Metall. Mater. 41 (1993) 1009.10.1016/0956-7151(93)90150-QSearch in Google Scholar
[24] Y.H. Qi, J.T. Guo, C.Y. Cui, G.S. Li: Mater Lett., in press.Search in Google Scholar
[25] J.Y. Uan, L.H. Chen, T.S. Lui: Metall. Mater. Trans. A 28 (1997) 401.10.1007/s11661-997-0141-3Search in Google Scholar
© 2004 Carl Hanser Verlag, München
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles AApplied
- Automated dihedral angle measurement in liquid phase sintered alloys
- Computer-aided analysis of repair welding of stamping tools
- Influence of retrogression and re-ageing on the mechanical and corrosion properties of 7039 aluminium alloy
- On the occurrence of Z-phase in a creep-tested 10 % Cr steel
- Superplasticity in a directionally solidified multiphase Ni-25Al-25Cr alloy
- Articles BBasic
- Assessment of thermodynamic parameters in the system ZrO2–Y2O3–Al2O3
- Assessment of the thermodynamics and phase diagram of the SrO–B2O3 system
- Thermodynamic description of the Au–Al system
- Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites
- Precipitation behavior of an Fe-1.03 wt.% Cu alloy
- Instructions to Authors/Richtlinien für Autoren
- Instructions for Authors
- Notifications/Mitteilungen
- Personal/Personelles
- Press/Presse
- Books/Bücher
- Events/Veranstaltungen
Articles in the same Issue
- Frontmatter
- Editorial
- Editorial
- Articles AApplied
- Automated dihedral angle measurement in liquid phase sintered alloys
- Computer-aided analysis of repair welding of stamping tools
- Influence of retrogression and re-ageing on the mechanical and corrosion properties of 7039 aluminium alloy
- On the occurrence of Z-phase in a creep-tested 10 % Cr steel
- Superplasticity in a directionally solidified multiphase Ni-25Al-25Cr alloy
- Articles BBasic
- Assessment of thermodynamic parameters in the system ZrO2–Y2O3–Al2O3
- Assessment of the thermodynamics and phase diagram of the SrO–B2O3 system
- Thermodynamic description of the Au–Al system
- Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites
- Precipitation behavior of an Fe-1.03 wt.% Cu alloy
- Instructions to Authors/Richtlinien für Autoren
- Instructions for Authors
- Notifications/Mitteilungen
- Personal/Personelles
- Press/Presse
- Books/Bücher
- Events/Veranstaltungen