Rheological Behaviour of LLDPE/LDPE Blends under Elongational Deformation
-
P. Micic
Abstract
Blends made of one linear low density polyethylene (LLDPE) and either of two low density polyethylenes (LDPE 1 and LDPE 2) were tested in elongational modes of deformation using elongational viscosity and melt strength test. In addition to rheological measurements the melt miscibility of the blends was ascertained by the differential scanning calorimetry (DSC) test on melt quenched samples. From the results, the relation between melt morphology of the blends and their performance under elongation, as well as the influence of molecular structure in particular long chain branching, on elongational response were determined. It was observed that high resistance to elongational deformation of the blends is linked to the immiscibility of the blend components in the melt. On the other hand the influence of long chain branching is to increase elongational viscosity for the parent polymers, as well as promoting the blend immiscibility and therefore altering elongational performance of the blends.
© 1997, Carl Hanser Verlag, Munich
Articles in the same Issue
- Contents
- Contents
- Editorial
- Third in a Series: Pioneers of Polymer Processing: Charles Goodyear
- Screw Extrusion/Mixing
- Chaotic Features of Flow in Polymer Processing Equipment-Relevance to Distributive Mixing
- Influence of Design on Mixing Efficiency in a Variable Intermeshing Clearance Mixer
- Simulation of Non-Isothermal Flow in a Modular Buss Kneader and Comparison with Experiment
- Rheological Behaviour of LLDPE/LDPE Blends under Elongational Deformation
- Effect of Compounding Conditions on Mechanical Properties of Glass Fiber-Reinforced Polyamide-6
- Die Extrusion
- A New Approach to Simulation of Die Flow which Incorporates the Extruder and Rotating Screw Tips in the Analysis
- New Aspects Concerning the Design of Coathanger Dies
- Film
- On-Line Birefringence Measurement in Film Blowing of a Linear Low Density Polyethylene
- Brittle Melt Rupture Phenomena in Polymer Processing
- Moulding
- Injection Molding of LDPE/BaSO4 Blends
- An Experimental Study of Rotational Molding of Polypropylene/Polyethylene Copolymers
- Determination of the Inter-Relationships Between Processing Conditions and Properties of an Injection Molded Silicone Ring Using an Experimental Design
- Numerical Simulation of the Flow and Fiber Orientation in Reinforced Thermoplastic Injection Molded Products
- Wide-Angle X-Ray, Densitometric and Microscopical Studies on Injection Molded Polypropylene Disks
Articles in the same Issue
- Contents
- Contents
- Editorial
- Third in a Series: Pioneers of Polymer Processing: Charles Goodyear
- Screw Extrusion/Mixing
- Chaotic Features of Flow in Polymer Processing Equipment-Relevance to Distributive Mixing
- Influence of Design on Mixing Efficiency in a Variable Intermeshing Clearance Mixer
- Simulation of Non-Isothermal Flow in a Modular Buss Kneader and Comparison with Experiment
- Rheological Behaviour of LLDPE/LDPE Blends under Elongational Deformation
- Effect of Compounding Conditions on Mechanical Properties of Glass Fiber-Reinforced Polyamide-6
- Die Extrusion
- A New Approach to Simulation of Die Flow which Incorporates the Extruder and Rotating Screw Tips in the Analysis
- New Aspects Concerning the Design of Coathanger Dies
- Film
- On-Line Birefringence Measurement in Film Blowing of a Linear Low Density Polyethylene
- Brittle Melt Rupture Phenomena in Polymer Processing
- Moulding
- Injection Molding of LDPE/BaSO4 Blends
- An Experimental Study of Rotational Molding of Polypropylene/Polyethylene Copolymers
- Determination of the Inter-Relationships Between Processing Conditions and Properties of an Injection Molded Silicone Ring Using an Experimental Design
- Numerical Simulation of the Flow and Fiber Orientation in Reinforced Thermoplastic Injection Molded Products
- Wide-Angle X-Ray, Densitometric and Microscopical Studies on Injection Molded Polypropylene Disks