Phase equilibria in the Zr–Si–B ternary system (Zr–Si–ZrB2 region) at 1 173 K
-
Feng Han
Abstract
The isothermal section of the Zr–Si–B ternary system (Zr–Si–ZrB2 region) at 1 173 K has been experimentally determined. All equilibrated alloys were characterized via X-ray powder diffraction and scanning electron microscopy equipped with energy-dispersive X-ray analysis. A ternary phase Zr5(Si0.86B0.14)3 was found at 1 173 K. The experimental results show that the isothermal section consists of 11 single-phase regions, 26 two-phase regions and 13 three-phase regions. The existence of eight compounds, i. e. ZrSi2, ZrSi, Zr5Si4, Zr3Si2, Zr2Si, ZrB, ZrB2 and Zr5(Si0.86B0.14)3 in this system has been confirmed in the Zr–Si–ZrB2 region at 1 173 K.
References
[1] D.Q.Peng, X.D.Bai, X.W.Chen, Q.G.Zhou, X.Y.Liu, R.H.Yu, P.Y.Deng: Surf. Coat. Technol.190 (2005) 271–280. 10.1016/j.surfcoat.2004.01.034Search in Google Scholar
[2] G.Sharma, P.K.Limaye, D.T.Jadhav: J. Nucl. Mater.394 (2009) 151–154. 10.1016/j.jnucmat.2009.09.001Search in Google Scholar
[3] S.Ueta, J.Aihara, A.Yasuda, H.Ishibashi, T.Takayama, K.Sawa: J. Nucl. Mater.376 (2008) 146–151. 10.1016/j.jnucmat.2008.02.068Search in Google Scholar
[4] S.Q.Guo, Y.Kagawa, T.Nishimura: J. Eur. Ceram. Soc.29 (2009) 787–794. 10.1016/j.jeurceramsoc.2008.06.037Search in Google Scholar
[5] H.M.Chen, F.Zheng, H.S.Liu, L.P.Liu, Z.P.Jin: J. Alloys Compd.468 (2009) 209–216. 10.1016/j.jallcom.2008.01.061Search in Google Scholar
[6] Y.L.Deng, J.W.Lee, B.S.Lou, J.G.Duh, J.J.Chu, J.S.C.Jang: Surf. Coat. Technol.259 (2014) 115–122. 10.1016/j.surfcoat.2014.03.026Search in Google Scholar
[7] K.Ito, M.Kumagai, T.Hayashi: Scr. Mater.49 (2003) 285–290. 10.1016/S1359-6462(03)00289-6Search in Google Scholar
[8] D.M.P.Júnior, C.A.Nunes, G.C.Coelho, F.Ferreira: Intermetallics11 (2003) 251–255. 10.1016/S0966-9795(02)00249-2Search in Google Scholar
[9] H.Nowotny, E.Dimakopoulou, H.Kudielka: Monatsh. Chem.881957 180–192. 10.1007/BF00901624Search in Google Scholar
[10] M.Akinc, M.K.Meyer, M.J.Kramer, A.J.Thom, J.J.Huebsch, B.Cook: Mater. Sci. Eng. A261 (1999) 16–23. 10.1016/S0921-5093(98)01045-4Search in Google Scholar
[11] M.K.Meyer, A.J.Thom, M.Akinc: Intermetallics7 (1999) 153–162. 10.1016/S0966-9795(98)00058-2Search in Google Scholar
[12] E.C.T.Ramos, G.Silva, A.S.Ramos, C.A.Nunes, C.A.R.P.Baptista: Mater. Sci. Eng. A363 (2003) 297–306. 10.1016/S0921-5093(03)00650-6Search in Google Scholar
[13] Y.Yang, Y.A.Chang, L.Tan, W.Cao: Acta Mater.53 (2005) 1711–1720. 10.1016/j.actamat.2004.12.020Search in Google Scholar
[14] Y.Yang, Y.A.Chang, L.Tan, Y.Du: Mater. Sci. Eng. A361 (2003) 281–93. 10.1016/S0921-5093(03)00560-4Search in Google Scholar
[15] Y.Yang, Y.A.Chang: Intermetallics13 (2005) 121–28. 10.1016/j.intermet.2004.06.007Search in Google Scholar
[16] Y.Yang, H.Bei, S.Chen, E.P.George, J.Tiley, Y.A,Chang: Acta Mater.58 (2010) 541–548. 10.1016/j.actamat.2009.09.032Search in Google Scholar
[17] C.A.Nunes, B.B.de Lima, G.C.Coelho, P.A.Suzuki: J. Phase Equilib. Diffus.30 (2009) 345–350. 10.1007/s11669-009-9533-ySearch in Google Scholar
[18] Y.Yang, S.Chen, Y.Chang: Intermetallics18 (2010) 51–56. 10.1016/j.intermet.2009.06.003Search in Google Scholar
[19] Y.Yang, Y.Chang: Intermetallics13 (2005) 121–128. 10.1016/j.intermet.2004.06.007Search in Google Scholar
[20] C.A.Nunes, D.M.PJúnior, G.C.Coelho, P.A.Suzuki: J. Phase Equilib. Diffus.32 (2011) 92–96. 10.1007/s11669-010-9846-xSearch in Google Scholar
[21] M.Hansen, K.Anderko: Constitution of Binary Alloys, 2nd ed. (1958) 1197–1199.Search in Google Scholar
[22] C.B.Alcock, K.T.Jacob, S.Zador: Atomic energy review. Special issue No. 6 (Ed. O.Kubaschewski) IAEA Vienna, (1976) 55–125.Search in Google Scholar
[23] H.Okamoto: Bull. Alloy Phase Diag.11 (1990) 513–519. 10.1007/BF02841696Search in Google Scholar
[24] B.Aronsson: Ark. Kem.16 (1960) 379–423.Search in Google Scholar
[25] O.Schob, H.Nowotny, F.Benesovsky: Planseeber. Pulvermetall.10 (1962) 65–71.Search in Google Scholar
[26] C.E.Brukl:. Tech. Rep. AFML-TR-65–2, Wright-Patterson Air Force Base, OH, (1968).Search in Google Scholar
[27] P.Villars, K.Cenzual, Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2012. (2009) 13.Search in Google Scholar
[28] Y.A.Kocherzhinskii, O.G.Kulik: Tezisy. Dokl. Vses. Konf. Kristallokhim. Intermet. Soedin.2 (1974) 154–155.Search in Google Scholar
[29] N.H.Salpadoru, H.M.Flower: Metall. Mater. Trans. A26 (1995) 243–257. 10.1007/BF02664663Search in Google Scholar
[30] T.B.Massalski, H.Okamoto, P.R.Subramanian, L.Kacprzak: Binary Alloy Phase Diagrams, 2nd ed, ASM International, Materials Park, OH. (1990).Search in Google Scholar
[31] K.I.Portnoi, V.M.Romashov: Powder. Metal. Metal. C+.11 (1972) 378–384. 10.1007/BF00797741Search in Google Scholar
[32] P.Rogl, P.E.Potter: Calphad12 (1988) 191–204. 10.1016/0364-5916(88)90021-1Search in Google Scholar
[33] P.Rogl: Phase diagrams of ternary metal-boron-carbon systems, ASM, Materials Park. 566 (1998).Search in Google Scholar
[34] E.Rudy: Aerojet-General Corp Sacramento Ca Materials Research Lab, 1969.Search in Google Scholar
[35] F.W.Glaser, B.Post: Trans. AIME.197 (1953) 1117–1118.Search in Google Scholar
[36] K.P.Portnoi, V.M.Romashov, L.I.Vyroshina: Metall.91 (1970) 68–71.Search in Google Scholar
[37] H.Nowotny, E.Rudy, F.Benesovsky: Monatsh. Chem.91 (1960) 963–974. 10.1007/BF00929564Search in Google Scholar
[38] O.I.Shulishova, I.A.Shcherbak: Izv. Akad. Nauk. SSSR, Neorg. Mater.3 (1967).Search in Google Scholar
[39] J.S.Haggerty, J.L.O'Brien, J.E.Wenckus: J. Cryst. Growth.3 (1969) 291–293. 10.1016/0022-0248(68)90156-5Search in Google Scholar
[40] Y.Champion, S.Hagege: J. Mater. Sci. Lett.11 (1992) 290–293. 10.1007/BF00729417Search in Google Scholar
[41] Y.Champion, S.Hagege: J. Mater. Sci.33 (1998) 4035–4041. 10.1023/A:1004470817744Search in Google Scholar
[42] J.J.Wu, W.H.Ma, B.Yang, D.C.Liu, Y.N.Dai: Silicon4 (2012) 289–295. 10.1007/s12633-012-9134-ySearch in Google Scholar
[43] K.Schubert, A.Raman, W.Rossteutscher: Naturwissenschaften51 (21) (1964) 506–507. 10.1007/BF00632205Search in Google Scholar
[44] E.Parthe, J.T.Norton: Monatsh. Chem.91 (1960) 1127–1133. 10.1007/BF00899838Search in Google Scholar
[45] http://materials.springer.com/.Search in Google Scholar
[46] E.Rudy, S.Windisch: Techn. Rept. AFML-TR-65-2, pt, I, vol, VIII, Wright Patterson AFB, Ohio. (1966) 1–33.Search in Google Scholar
[47] H.Okamoto: J. Phase Equilib. Diffus.26 (2005) 396–396. 10.1007/s11669-005-0101-9Search in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Molecular dynamics simulation of hydrogen atom diffusion in crystal lattice of fcc metals
- Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360–500 °C
- Electron backscatter diffraction-analysis of deformed micro-milled commercially pure-titanium specimens at different strain values
- Phase equilibria in the Zr–Si–B ternary system (Zr–Si–ZrB2 region) at 1 173 K
- Density and solidification shrinkage of hypereutectic Al–Si alloys
- Effects of magnetic energy on microstructural evolution during peritectic solidification in ferromagnetic alloy investigated by phase-field simulation
- Improved quality of flash-lamp-crystallized polycrystalline silicon films by using low defect density Cat-CVD a-Si films
- Thermite welding of Cu–Nb microcomposite wires
- Modification of microstructure and mechanical properties of Al–Zn–Mg/3 wt.% Al2O3 composite through semi-solid thermomechanical processing using variable loads
- Magnesium nanocomposites reinforced with a high volume fraction of SiC particulates
- Porosity, microstructure and mechanical behavior of NiO–YSZ composite anode for solid oxide fuel cells
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Molecular dynamics simulation of hydrogen atom diffusion in crystal lattice of fcc metals
- Rapid nickel diffusion in cold-worked type 316 austenitic steel at 360–500 °C
- Electron backscatter diffraction-analysis of deformed micro-milled commercially pure-titanium specimens at different strain values
- Phase equilibria in the Zr–Si–B ternary system (Zr–Si–ZrB2 region) at 1 173 K
- Density and solidification shrinkage of hypereutectic Al–Si alloys
- Effects of magnetic energy on microstructural evolution during peritectic solidification in ferromagnetic alloy investigated by phase-field simulation
- Improved quality of flash-lamp-crystallized polycrystalline silicon films by using low defect density Cat-CVD a-Si films
- Thermite welding of Cu–Nb microcomposite wires
- Modification of microstructure and mechanical properties of Al–Zn–Mg/3 wt.% Al2O3 composite through semi-solid thermomechanical processing using variable loads
- Magnesium nanocomposites reinforced with a high volume fraction of SiC particulates
- Porosity, microstructure and mechanical behavior of NiO–YSZ composite anode for solid oxide fuel cells
- DGM News
- DGM News