Home Technology Numerical study on cut-off diameter of aerosol particle for filtered containment venting system in nuclear power plant
Article
Licensed
Unlicensed Requires Authentication

Numerical study on cut-off diameter of aerosol particle for filtered containment venting system in nuclear power plant

  • C.-L. Yu and T.-C. Wang
Published/Copyright: March 22, 2019
Become an author with De Gruyter Brill

Abstract

This paper presents analytical investigations of the cut-off diameter of aerosol particle for filtered containment venting system in a nuclear power plant. These analyses were done for operation conditions of the containment venting and the numerical results reveal that the particle sizes of fission products released to environment range between 10−8 m and 10−5 m and mostly distribute between 10−7 m and 10−6 m. For designing a filtered containment venting system, the collection efficiency of the filter must be high-quality in the main range 10−7 m – 10−6 m. In this research, the numerical results can offer nuclear power plant a useful reference to design and set up FCVS.

Kurzfassung

In diesem Beitrag werden analytische Untersuchungen zum Cut-Off-Durchmesser von Aerosolpartikeln für das gefilterte Containment-Entlüftungssystem in einem Kernkraftwerk vorgestellt. Diese Analysen wurden für die Betriebsbedingungen der Containment-Entlüftung durchgeführt und die numerischen Ergebnisse zeigen, dass die Partikelgrößen der in die Umgebung freigesetzten Spaltprodukte zwischen 10−8 m und 10−5 m liegen und sich meist zwischen 10−7 m und 10−6 m verteilen. Für die Auslegung eines gefilterten Containment-Entlüftungssystems muss der Abscheidegrad des Filters im Hauptbereich 10−7 m – 10−6 m hochwertig sein. In dieser Forschung können die numerischen Ergebnisse dem Kernkraftwerk eine nützliche Referenz für die Auslegung und Einrichtung von FCVS bieten.


* E-Mail:

References

1 Pavel, P.; Hirose, P. K.; Aoyama, M.: Fukushima accident: radioactivity impact on the environment, Elsevier, Amsterdam, 2013Search in Google Scholar

2 USA Nuclear Regulatory Commission: Report SECY-12-0157 for consideration of additional requirements for containment venting systems for boiling water reactors with Mark I and Mark II containments, 2012Search in Google Scholar

3 Song, Y. M.; Jeong, H. S.; Park, S. Y.; Kim, D. H.; Song, J. H.: Overview of containment filtered vent under severe accident condition at Wolsong NPP Unit 1. Nuclear Engineering and Technology45 (2013) 59710.5516/NET.03.2013.712Search in Google Scholar

4 Lee, S. W.; Hong, T. H.; Choi, Y. J.; Seo, M. R.; Kim, H. T.: Containment depressurization capabilities of filtered venting system in 1000 MWe PWR with large dry containment. Science and Technology of Nuclear Installations2014 (2014) 110.1080/00223131.2014.956830Search in Google Scholar

5 Kim, H. T.; Jung, C. H.; Oh, S. N.; Lee, K. W.: Particle removal efficiency of gravitational wet scrubber considering diffusion, interception, and impaction. Environmental Engineering Science18 (2004) 12510.1089/10928750151132357Search in Google Scholar

6 Lee, M.; Wu, E. C.: A Long-Term MAAP 3.0B Analysis of a severe anticipated transient without scram accident in a boiling water reactor. Nuclear Technology24 (1992) 3910.13182/NT92-A34752Search in Google Scholar

7 Ferng, Y. M.; Liu, Y. T.; Shih, C.: Investigating the execution of EOPs in LOTDFP + ATWS + LOCA scenarios for an ABWR using MAAP code. Nuclear Engineering and Design240 (2010) 19810.1016/j.nucengdes.2009.07.020Search in Google Scholar

8 Sakai, N.; Horie, H.; Yanagisawa, H.; Fujii, T.; Mizokami, S.; Okamoto, K.: Validation of MAAP model enhancement for Fukushima Dai-ichi accident analysis with phenomena identification and ranking table (PIRT). Journal of Nuclear Science and Technology51 (2014) 95110.1080/00223131.2014.901927Search in Google Scholar

9 Miller, S.: Preparing for the extended loss of AC power (ELAP) event in the USA. in 22nd International Conference on Nuclear Engineering, Prague, July 7–11, 201410.1115/ICONE22-30173Search in Google Scholar

10 Lee, K. W.; Liu, B. Y. H.: On the minimum efficiency and the most penetrating particle size for fibrous filters. Journal of the Air Pollution Control Association. 30 (1980) 37710.1080/00022470.1980.10464592Search in Google Scholar

11 Licht, W.: Air pollution control engineering: basic calculations for particulate collection. Marcel Dekker, New York, 1988Search in Google Scholar

12 Shih, Y. H.; Wang, S. J.; Chuang, K. C.; Huang, T. E.: A Study of the containment venting strategy for the Fukushima Daiichi accident. Nuclear Technology186 (2014) 34010.13182/NT12-145Search in Google Scholar

13 Shih, Y. H.; Wang, T. C.: RPV Depressurization strategy analysis for Chinshan nuclear power plant by using MAAP5. Nuclear Technology193 (2016) 110.13182/NT14-118Search in Google Scholar

Received: 2018-05-03
Published Online: 2019-03-22
Published in Print: 2019-03-18

© 2019, Carl Hanser Verlag, München

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110971/html
Scroll to top button