Impact of spacer on inter sub-channel mixing of coolant in nuclear fuel bundle: a survey and future patterns of research and advances
-
S. K. Verma
Abstract
Broad efforts have been ended in the last decade for the development of spacer and its effect on droplets that present in the vapour core. The spacers operate as droplet collectors and accumulate considerable amount of the droplet flux in an emblematic spacer section. This development paved the way for engineers and researchers to come up with spacer that exhibit better inter subchannel mixing in the reactor. The review is based on the correlation developed by different researchers for the spacer modelling, grey areas and challenges for further improvement in the prediction and some of the good models have been recommended. The effect of spacer on liquid films and droplet depositions before spacer and near spacer have been studied and finally based on this investigation a proposed LDV measurement techniques have been applied on 1/12th segment of Advanced Heavy Water Reactor for further analysis of spacer effect on annular flow. Efforts are made to uncover the investigated gaps from the precedent literatures, as an effect of which it is concluded that there is extremely inadequate work published in the field of thermal-hydraulics incorporating spacer effect such as turbulent mixing, droplet deposition and liquid film thickness in the case of AHWR.
Kurzfassung
In den letzten zehn Jahren wurden die Arbeiten zur Entwicklung von Abstandhaltern und deren Wirkung auf die im Dampfkern vorhandenen Tröpfchen beendet. Abstandhalter arbeiten als Tropfenabscheider und sammeln einen beträchtlichen Teil des Tropfenflusses innerhalb des betrachteten Abschnitts eines Abstandhalters. Darauf aufbauend werden seitdem Abstandhalter entwickelt, die zu einer besseren Vermischung in den Unterkanälen von Brennelementen führen. Dieser Beitrag basiert auf den entwickelten Korrelationen zur Abstandhaltermodellierung und beschreibt deren offenen Fragestellungen sowie die Herausforderungen für weitere Verbesserungen. Dabei wird insbesondere der Einfluss der Abstandshalter auf flüssige Filme und Tröpfchenablagerungen vor und in der Nähe der Abstandshalter untersucht. Auf der Grundlage dieser Untersuchung wird LDV-Messtechnik vorgeschlagen, die an einem 1/12-Segment eines Advanced-Heavy-Water-Reactor-Modells aufgebaut wurde. Eine begleitende Literaturrecherche zeigt, dass der Einfluss von AHWR-Abstandshaltern auf Effekte wie turbulentes Mischen, Tröpfchenabscheidung und Flüssigkeitsschichtdicke noch weitgehend unzureichend untersucht sind.
References
1 Jayanti, S.; Reddy, R. K.: Effect of spacer grids on CHF in nuclear rod bundles. Nuclear Engineering and Design261 (2013) 66–7510.1016/j.nucengdes.2013.03.044Search in Google Scholar
2 Verma, S. K.; Sinha, S. L.; Chandraker, D. K.: Experimental investigation of effect of spacer on single phase turbulent mixing rate on simulated subchannel of Advanced Heavy Water Reactor. Annals of Nuclear Energy110 (2017) 186–19510.1016/j.anucene.2017.06.020Search in Google Scholar
3 Chandraker, D. K.: Study on critical power for Advanced Heavy Water Reactor. Ph.D. Thesis, Department of Nuclear Engineering, Tokyo Institute of Technology (2012)Search in Google Scholar
4 Waters, E. D.: Fluid mixing experiments with a wire wrapped 7-rod bundle fuel assembly. Annular Space, 1961Search in Google Scholar
5 Carelli, M.; Curzio, G.; Renieri. A.: A radioactive tracer technique for measuring coolant mixing in nuclear reactor fuel sub-assemblies. Nuclear Engineering and Design11 (1969) 93–10210.1016/0029-5493(70)90021-XSearch in Google Scholar
6 Cha, J. H.; Cho, M. H.: A study on coolant mixing in multi rod bundle subchannels. Journal of the Korean Nuclear Society2 (1970) 19–25Search in Google Scholar
7 Roidt, M.; Vegter, B. J.; Pechersky, M. J.; Markley, R. A.: Experimental determination of turbulent exchange coefficients in a model reactor rod bundle. In: National heat transfer conference, Atlanta, Georgia, USA, number CONF-730803-2, 1973Search in Google Scholar
8 Hanson, A. S.; Todreas, N.: Fluid mixing studies in a hexagonal 61-pin, wire wrappedrod bundle. Fuel Assem, 197710.2172/5159920Search in Google Scholar
9 Rehme, K.: Turbulent momentum transport in rod bundles. Nuclear Engineering andDesign62 (1980) 137–146, 10.1016/0029-5493(80)90025-4Search in Google Scholar
10 Rehme, K.: The structure of turbulent flow through rod bundles. Nuclear Engineeringand Design99 (1987) 141–15410.1016/0029-5493(87)90116-6Search in Google Scholar
11 Rehme, K.: Experimental observations of turbulent flow through subchannels of rod bundles. Experimental Thermal and Fluid Science2 (1989) 341–34910.1016/0894-1777(89)90023-XSearch in Google Scholar
12 Rehme, K.: The structure of turbulence in rod bundles and the implications onnatural mixing between the subchannels. International Journal of Heat and Mass Transfer35 (1992) 567–58110.1016/0017-9310(92)90291-YSearch in Google Scholar
13 Ylönen, A.; Bissels, W.-M.; Prasser, H.-M.: Single-phase cross-mixing measurements in a 4 × 4 rod bundle. Nuclear Engineering and Design241 (2011) 2484–249310.1016/j.nucengdes.2011.04.014Search in Google Scholar
14 Bulk, F. P.: An experimental study on cross-flow mixing in a rod-bundle geometry using a wire-mesh. Master's thesis, Delft University of Technology, 2012Search in Google Scholar
15 Wang, X.; Wang, R.; Du, S.; Chen, J.; Tan, S.: Flow visualization and mixing quantification in a rod bundle using Laser induced fluorescence. Nuclear Engineering and Design305 (2016) 1–810.1016/j.anucene.2015.12.029Search in Google Scholar
16 Sharma, M. P.; Nayak, A. K.: Determination of turbulent mixing rate for single-phase flow in simulated subchannels of a natural-circulation pressure tube-type BWR. Nuclear Science and Engineering180 (2015) 1–10, 10.13182/NSE14-102Search in Google Scholar
17 Chandraker, D. K.; Nayak, A. K.; Vijayan. P. K.: Effect of spacer on the dryout of BWR fuel rod assemblies. Nuclear Engineering and Design294 (2015) 262–27310.1016/j.nucengdes.2015.09.004Search in Google Scholar
18 Kawahara, A.; Sadatomi, M.; Imamura, S.; Shimoharai, Y.; Hirakata, Y.; Endo, M.: Effects of grid spacer with mixing vane on entrainments and depositions in two-phase annular flows. Nuclear Engineering and Technology147 (2015) 389–39710.1016/j.net.2015.04.002Search in Google Scholar
19 Cho, H.; Choi, K. K. Y.; ChoS. C.; Song. C. H.: Experimental observation of the droplet size change across a wet grid spacer in a 6X6 rod bundle. Nuclear Engineering and Design241 (2011) 4649–465610.1016/j.nucengdes.2011.03.042Search in Google Scholar
20 Zhang, H.; Yokomine, T.; Kunugi, T.: Turbulence modulation of the upward turbulent bubbly flow in vertical ducts. Nuclear Engineering and Technology47 (2015) 513–52210.1016/j.net.2015.04.006Search in Google Scholar
21 Michiyoshi, I.; Serizawa, A.: Turbulence in two-phase bubble flow. Nuclear Engineering and Design95 (1986) 253–26710.1016/0029–5493(86)90052-XSearch in Google Scholar
22 Serizawa, A.; Kataoka, I.: Turbulence suppression in bubbly two-phase flow. Nuclear Engineering and Design122 (1990) 1–1610.1016/0029-5493(90)90193-2Search in Google Scholar
23 Whalley, P. B.: The calculation of dryout in a rod bundle. Int. J. Multiphase Flow3 (1977) 501–51510.1016/0301-9322(77)90026-XSearch in Google Scholar
24 Adamsson, C.; Le Corre, J. M.: Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies. Nuclear Engineering and Design241 (2011) 2843–285810.1016/j.nucengdes.2011.01.033Search in Google Scholar
25 Ishii, M.: Grolmes, M. A.: Inception criteria for droplet entrainment in two-phase concurrent film flow. AICHE J.21 (1975) 308–31810.1002/aic.690210212Search in Google Scholar
26 Yang, S. K.; Chung, M. K.: Spacer grid effects on turbulent flow in rod bundles. Journal of Korean Nuclear Society28 (1996)Search in Google Scholar
27 Rogers, J. T.; Tahir, A. E. E.: Turbulent interchange mixing in rod bundles and the role of secondary flows. ASME 75-HT-31, (1975)Search in Google Scholar
28 Cheng, S. K.; Todreas, N. E.: Hydrodynamic models and correlations for bare and wire-wrapped Hexagonal rod bundles–bundle friction factors, sub-channel friction factors and mixing parameters. Nuclear Engineering and Design92 (1986) 227–25110.1016/0029-5493(86)90249-9Search in Google Scholar
29 Yamamoto, Y.; Hoshide, A.; Mitsutake, T.; Morooka, S.: Analytical study on effects of BWR fuel spacer on dropletdeposition. Nuclear Engineering and Design175 (1997) 119–12910.1016/S0029-5493(97)00168-4Search in Google Scholar
30 Rowe, D. S.: Measurement of turbulent velocity, intensity and scale in rod bundle flow channels. Pacific Northwest Laboratory, Wash., BNWL-1736 (1973) 10.2172/4435397Search in Google Scholar
31 Kried, D. L.; Creer, J. M.; Bates, J. M.; Quigley, M. S.; Sutey, A. M.; Rowe, D. S.: Fluid flow measurements in rod bundles using laser Doppler anemometry techniques. Fluid Flow and Heat Transfer Over Rod or Tube Bundles, ASME, New York, 1979, pp. 13–27Search in Google Scholar
32 Carajilescov, P.; Todreas, N. E.: Experimental and analytical study of axial turbulent flows in an interior sub channel of a bare rod bundle. J. Heat Transfer, Trans. ASME98 (1976) 262–26810.1115/1.3450529Search in Google Scholar
33 Bartzis, J. G.; Todreas, N. E.: Turbulence modelling of axial flow in a bare rod bundle. J. Heat Transfer, Trans. ASME101 (1979) 628–63410.1115/1.3451048Search in Google Scholar
34 Chieng; C.-C.; Lin, C.: Velocity distribution in the peripheral subchannels of the CANDU type 19 rod bundle. Nuclear Engineering and Design55 (1979) 389–39410.1016/0029-5493(79)90117-1Search in Google Scholar
35 Nikuradse, J.: Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren. VDI Fortschrittshefte356 (1932)10.1007/BF02716946Search in Google Scholar
36 EiflerW.; Nijsing, R.: VELASCO – velocity field in asymmetric rod configurations. EURATOM, Rep. EUR- 4930e (1973)Search in Google Scholar
37 Carlucci, L. N.; Hammouda, N.; Rowe, D. S.: Two Phase turbulent mixing and buoyancy drift in rod bundle. Nuclear Engineering and Design227 (2003) 65–8410.1016/j.nucengdes.2003.08.003Search in Google Scholar
38 Leung, K. H.; Novog, D. R.: Evaluation of ASSERT-PV V3R1 against the PSBT benchmark. Science and Technology of Nuclear Installations2012 (2012), 10.1155/2012/863503Search in Google Scholar
39 Serizawa, A.; Kataoka, I.: Turbulence suppression in bubbly two-phase flow. Nuclear Engineering and Design122 (1990) 1–1610.1016/0029–5493(90)90193–2Search in Google Scholar
40 Wheeler, J. E.: Experimental studies on the effects of a spacer grid in a 1 × 3 rod bundle single and two-phase flow. Ms Thesis, 2014, The Pennsylvania State UniversitySearch in Google Scholar
41 Paranjape, S.; Chen, S.; Hibiki, T.; Ishii, M.: Flow regime identification under adiabatic upward two-phase flow in a vertical rod bundle geometry. Journal of Fluids Engineering133 (2011), 10.1115/1.4004836Search in Google Scholar
42 Green, C.: Experimental study on the effect of spacer grid in two-phase flow through a 1 × 3 rod bundle, 2012, The Pennsylvania State UniversitySearch in Google Scholar
43 Das gupta, A.; Chandraker, D. K.; Vijayan, P. K.; Saha, D.: Steady state subchannelanalysis of AHWR fuel cluster. BARC/2006/E/018 (2006)Search in Google Scholar
44 Kjellstrom, B.: Studies of turbulent flow parallel to a rod bundle of triangular array. AB Atomenergi, Report AE-RV 196, Sweden (1971)Search in Google Scholar
45 Trupp, A. C.; Azad, R. S.: The structure of turbulent flow in triangular array rod bundles. Nuclear Engineering and Design32 (1975) 47–8410.1016/0029-5493(75)90090-4Search in Google Scholar
46 Drain, L. E.: The Laser Doppler Technique. (John Wiley and Sons, New York, 1980) pp. 36–50Search in Google Scholar
47 Rowe, D. S.; Angel, C. W.: Cross flow mixing between parallel flow channel during boiling, Part III: Effect of spacer on mixing between two channels. BettelleNortwest, BNWL-371, (1969) 10.2172/4823782Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Reactor safety research within the Helmholtz Association
- Analysis of the impact of different scenarios on the simulation results of unauthorized dilution of boric acid in the coolant of the primary circuit of the NPP-2006
- Assessment of void fraction predictability of system codes in subchannels
- Review on using nanofluids for heat transfer enhancement in nuclear power plants
- Analysis of operating characteristics of IPWR under natural circulation
- Impact of spacer on inter sub-channel mixing of coolant in nuclear fuel bundle: a survey and future patterns of research and advances
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Reactor safety research within the Helmholtz Association
- Analysis of the impact of different scenarios on the simulation results of unauthorized dilution of boric acid in the coolant of the primary circuit of the NPP-2006
- Assessment of void fraction predictability of system codes in subchannels
- Review on using nanofluids for heat transfer enhancement in nuclear power plants
- Analysis of operating characteristics of IPWR under natural circulation
- Impact of spacer on inter sub-channel mixing of coolant in nuclear fuel bundle: a survey and future patterns of research and advances