Simulation of error in suppression of Xenon oscillations in a WWER-1000 nuclear reactor
-
R. Akbari
, D. Rezaei Ochbelagh and A. Gharib
Abstract
Errors in suppression of xenon oscillations refer to anticipated operational occurrences. Such errors could be treated as a long-term absence of some special actions used to stabilize the power field or incorrect movements of the control and protection system absorber rod. In this study, the movement of control rod, causing maximum power tilt, has been simulated in a WWER-1000 reactor by using NJOY and MCNPX codes and also a single heated channel model for thermal hydraulic calculations. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. Analyses are based on linear heat rate of the most-powered fuel rod in the beginning of cycle and end of cycle. First, we determined the position of this most-powered fuel rod at the beginning and end of cycle separately. Then the most-powered fuel rod is segmented axially into equally spaced zones to study the effect of axial linear heat rate profile. Finally, the results have been compared with Final Safety Analysis Report of WWER-1000 reactor. It is seen that there is a great similarity between calculated and reported results.
Kurzfassung
Fehler bei der Unterdrückung von Xenon-Schwingungen beziehen sich auf erwartete Betriebsereignisse. Solche Fehler können bei langfristigem Ausbleiben von Maßnahmen zur Stabilisierung der Leistungsverteilung oder bei fehlehrhaften Steuerstabbewegungen auftreten. In diesem Beitrag wurde die Bewegung eines Steuerstabs in einem WWER-1000-Reaktor mit Hilfe von NJOY- und MCNPX-Codes sowie mit einem Ein-Kanal-Wärme-Modell für thermohydraulische Berechnungen simuliert. Die Ergebnisse dieses Modells wurden mit Ergebnissen von RELAP5-Berechnungen für WWER-1000-Anlagen überprüft. Die Analyse basiert auf der linearen Wärmerate des leistungsstärksten Brennstabs zu Beginn und zum Ende des Zyklus. Zuerst wurde die Position dieses Brennstabs zu Beginn und dann am Ende des Zyklus bestimmt. Danach wurde dieser Brennstab in gleich große Zonen geteilt, um den Effekt des axialen linearen Wärmeraten-Profils zu untersuchen. Schließlich wurden die Ergebnisse mit dem „Final Safety Analysis Report“ des WWER-1000-Reaktors verglichen. Dabei zeigt sich, dass es eine große Übereinstimmung zwischen berechneten und berichteten Ergebnissen gibt.
References
1 Bogdanova, E. V.; Gorodkov, S. S.: Xenon instability study of large core Monte Carlo calculations. Kerntechnik81 (2016) 363–36610.3139/124.110712Search in Google Scholar
2 Uvakin, M. A.; Alekhin, G. V.; Bykov, M. A.; Zaitsev, S. I.: Verification of three-dimensional neutron kinetics model of TRAP-KS code regarding reactivity variations. Kerntechnik81 (2016) 394–39910.3139/124.110700Search in Google Scholar
3 Parhizkari, H.; Aghaie, M.; Zolfaghari, A.; Minuchehr, A.: An approach to stability analysis of spatial xenon oscillations in WWER-1000 reactors. Ann. Nucl. Energy79 (2015) 125–13210.1016/j.anucene.2015.01.026Search in Google Scholar
4 Bikeev, A. S.; Shkarovsky, D. A.: Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code. Kerntechnik78 (2013) 343–34610.3139/124.110381Search in Google Scholar
5 Reiss, T.; Fehér, S.; Czifrus, S.: Xenon oscillation in SCWRs. Prog. Nucl. Energy53 (2011) 457–46210.1016/j.pnucene.2011.03.004Search in Google Scholar
6 Obaidurrahman, K.; Doshi, J. B.: Spatial instability analysis in pressurized water reactors. Ann. Nucl. Energy38 (2011) 286–29410.1016/j.anucene.2010.10.015Search in Google Scholar
7 Ansarifar, G. R.; Rafiei, M.: Second-order sliding-mode control for a pressurized water nuclear reactor considering the xenon concentration feedback. Nucl. Eng. Tech.37 (2015) 1–8Search in Google Scholar
8 Ansarifar, G.; Saadatzi, S.: Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy. Nucl. Eng. Tech.37 (2015) 1–11Search in Google Scholar
9 Ansarifar, G. R.; Esteki, M. H.; Arghand, M.: Sliding mode observer design for a PWR to estimate the xenon concentration & delayed neutrons precursor density based on the two point nuclear reactor model. Prog. Nucl. Energy79 (2015) 104–11410.1016/j.pnucene.2014.11.003Search in Google Scholar
10 Briemeister, J. F.: MCNPX a General Monte Carlo N-particle Transport Code. Version X.2.7, Los Alamos National Laboratory, 2013Search in Google Scholar
11 Shawer, M.; Aly, N.; Nagy, M.; Amin, E.: Determination of effects of burn up and reflector material on the kinetic parameters for open pool reactor using MCNP code. Kerntechnik75 (2010) 322–32810.3139/124.110109Search in Google Scholar
12 MacFarlane, R. E.: NJOY-99, Nuclear Data Processing System. <http://t2.lanl.gov/codes/njoy99/index.html>, 2000Search in Google Scholar
13 Todreas, N. E.; Kazimi, M. S.: Nuclear System, Thermal Hydraulic Fundamentals. Hemisphere Publishing Corporation, New York1993Search in Google Scholar
14 Calza-Bini, A.; Cosoli, G.; Filacchioni, G.; Lanchi, M.; Nobili, A.; Pesce, E.; Rocca, U.; Rotoloni, P. L.: In-pile measurement of fuel cladding conductance for pelleted and vipac zircaloy-2 sheathed fuel pin. Nucl. Technol.25 (1975) 10310.13182/NT75-A24353Search in Google Scholar
15 Atomic energy organization of Iran (AEOI), Final Safety Analysis Report (FSAR) for Bushehr WWER-1000 reactor. Tehran, Iran, 2003Search in Google Scholar
16 RELAP5 code development Team, RELAP5/MOD3 Code Manual, Idaho National Engineering Laboratory. 1995Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Porosity evolution study in irradiated UO2 fuel based on fuel matrix swelling
- Data collection assessment for the human performance analysis in nuclear installations
- Abnormal control rod withdrawal analysis for innovative research reactor using PARET-ANL codes
- Improving CANDU performance by using uranium – thorium mixed oxide fuel
- Computation of gamma radioactivity of natural rocks in the vicinity of Antalya province and its effect on health
- Calculation of liquid waste discharge limits for routine discharge of Tehran research reactor
- Thermal hydraulic assessment of a new design of PWR fuel assembly
- Simulation of error in suppression of Xenon oscillations in a WWER-1000 nuclear reactor
- A novel dual-molality densitometer for gauging in annular two phase flows using radial basis function
- Design and construction of toroidal field coil for Taban device
Articles in the same Issue
- Contents/Inhalt
- Contents
- Technical Contributions/Fachbeiträge
- Porosity evolution study in irradiated UO2 fuel based on fuel matrix swelling
- Data collection assessment for the human performance analysis in nuclear installations
- Abnormal control rod withdrawal analysis for innovative research reactor using PARET-ANL codes
- Improving CANDU performance by using uranium – thorium mixed oxide fuel
- Computation of gamma radioactivity of natural rocks in the vicinity of Antalya province and its effect on health
- Calculation of liquid waste discharge limits for routine discharge of Tehran research reactor
- Thermal hydraulic assessment of a new design of PWR fuel assembly
- Simulation of error in suppression of Xenon oscillations in a WWER-1000 nuclear reactor
- A novel dual-molality densitometer for gauging in annular two phase flows using radial basis function
- Design and construction of toroidal field coil for Taban device