Cyclotron production of 101Pd/101mRh radionuclide generator for radioimmunotherapy
-
M. Enferadi
, M. Sadeghi and M. Ensaf
Abstract
101mRh is one of such radionuclides that has been considered as a potential candidate for targeted radiotherapeutic use, due to its nuclear decay and chemical properties. Electrodeposition of rhodium metal on a copper backing was performed in acidic sulphate. The target was bombarded with a current intensity of 120 μA (Ep = 29 → 25 MeV) for 30 min (60 μAh). Radiochemical methods were investigated to optimize the production of no-carrier-added 101Pd/101mRh. The use of a cyclotron target with radiochemical processes (i.e. electrodeposition, electrodissolution and ion-exchange column chromatography) were carried out to produce this radionuclide in high-specific activity and radiochemical form suitable for radiopharmaceutical syntheses.
Kurzfassung
101mRh ist eines der Radionuklide, die wegen ihres Kernzerfalls und ihrer chemischen Eigenschaften als potentielle Kandidaten für eine gezielte Strahlentherapie in Frage kommen. Die Elektrodeposition von Rhodiummetall auf einem Kupferträger wurde in saurem Sulphat durchgeführt. Das Target wurde bombardiert mit einer Stromstärke von 120 μA (Ep = 29 → 25 MeV) für 30 min (60 μAh). Radiochemische Methoden wurden untersucht, um die Herstellung von trägerfreiem 101Pd/101mRh zu optimieren. Mit Hilfe eines Zyklotron-Targets und entsprechender radiochemischer Prozesse (wie z.B. Elektrodeposition, elektrolytische Auflösung und Ionenaustausch-Säulenchromatographie) wurde dieses Radionuklid mit hoher spezifischer Aktivität hergestellt in einer radiochemischen Form, die für die radiopharmazeutische Synthese geeignet ist.
References
1 Ramli, M.; Sharma, H. L.: Radiochemical separation of 101mRh via 101Pd from a rhodium target. Int. J. Appl. Radiat. Isot.48 (1997) 327Search in Google Scholar
2 Skakun, Y.; Qaim, S. M.: Excitation functions of 3He-particle induced reactions on 101Ru and 102Ru for production of the medically interesting radionuclide 101mRh. Int. Conf. Nucl. Data Sci. Technol. (2007) 137910.1051/ndata:07279Search in Google Scholar
3 Skakun, Y.; Qaim, S. M.: Measurement of excitation functions of helion-induced reactions on enriched Ru targets for production of medically important 103Pd and 101mRh and some other radionuclides. Appl. Radiat. Isot.66 (2008) 653 10.1016/j.apradiso.2007.11.013Search in Google Scholar
4 Lagunas-Solar, M. C.; Avila, M. J.; Johnson, P. C.: Targetry and radiochemical methods for the simultaneous cyclotron production of no-carrier-added radiopharmaceutical-quality 100Pd, 97Ru and 101mRh. Int. J. Radiat. Appl. Inst. A. Appl. Radiat. Isot.38 (1987) 151Search in Google Scholar
5 Sadeghi, M.; Enferadi, M.; Shirazi, A.: External and internal radiation therapy: Past and future directions. J. Can. Res. Ther.6 (2010) 239Search in Google Scholar
6 Scoville, C. L.; Fultz, S. C.; Pool, M. L.: Radiation's of 99Rh, 101Pd, 105Rh and 105Ru. Phys. Rev. 85 (1952) 207Search in Google Scholar
7 Sharma, B. L.: Investigation of decay-scheme of 101Rh. Nucl. Phys.19 (1960) 550Search in Google Scholar
8 Scholz, K. L.; Sodd, V. J.; Blue, J. W.: Cyclotron production of rhodium-101 m through its precursor palladium-101. Int. J. Appl. Radiat. Isot.28 (1977) 207 10.1016/0020-708X(77)90174-0Search in Google Scholar
9 Lagunas-Solar, M. C.; Wilkins, S. R.; Paulson, D. W.: Cyclotron production of rhodium-101 m from natural palladium: radiochemical methods and preliminary biological studies. J. Radioanal. Nucl. Chem.68 (1982) 245Search in Google Scholar
10 Lagunas-Solar, M. C.; Avila, M. J.; Johnson, P. C.: Cyclotron production of 101mRh via proton induced reaction on 101Rh target. Int. J. Appl. Radiat. Isot.35 (1984) 743 10.1016/0020-708X(84)90080-2Search in Google Scholar
11 Sadeghi, M.; Van den Winkel, P.; Afarideh, H.; Haji-Saeid, M.: A thick rhodium electrodeposition on copper backing as the target for production of palladium-103. J. Radioanal. Nucl. Chem.262 (2004) 665 10.1007/s10967-004-0490-ySearch in Google Scholar
12 Sadeghi, M.; Afarideh, H.; Van den Winkel, P.: Electrodissolution system for rhodium fragmented electroplated targets used for the industrial cyclotron production of 103Pd. J. Radioanal. Nucl. Chem.273 (2007) 52110.1007/s10967-007-0902-xSearch in Google Scholar
13 Sadeghi, M.; Afarideh, H.; Raisali, G.; Van den Winkel, P.: Electroplating/electrodissolution/recovery cycle for rhodium target used for the industrial cyclotron production of palladium-103. Radiochim. Acta94 (2006) 217 10.1524/ract.2006.94.4.217Search in Google Scholar
14 Chunfu, Z.; Yongxian, W.; Yongping, Z.; Xiuli, Z.: Cyclotron production of no-carrier-added palladium-103 by bombardment of rhodium-103 target. Appl. Radiat. Isot.55 (2001) 441 10.1016/S0969-8043(01)00051-3Search in Google Scholar
15 Sadeghi, M.; Shirazi, B.: Extraction separation of no-carrier-added 103Pd from irradiated Rh target, Cu and Zn using α-furyldioxime, dimethylglyoxime and α-benzildioxime. Appl. Radiat. Isot.66 (2008) 1810Search in Google Scholar
16 Khandaker, M. U.; Kim, K., Kim, G., Otuka, N.: Cyclotron production of the 105,106mAg, 100,101Pd, 100,101m,105Rh radionuclides by natPd(p, x) nuclear processes. Nucl. Instrum. and Methods. B268 (2010) 2303 10.1016/j.nimb.2010.04.002Search in Google Scholar
17 Sudar, S.; Cserpak, F.; Qaim, S. M.: Measurements and nuclear model calculations on proton-induced reactions on Rh-103 up to 40-MeV-evaluation of the excitation function of the Rh-103(p, n)Pd-103 reaction relevant to the production of the therapeutic radionuclide Pd-103. Appl. Radiat. Isot.56 (2002) 821 10.1016/S0969-8043(02)00054-4Search in Google Scholar
18 Hermanne, A.; Sonck, M.; Fenyvesi, A.; Daraban, L.: Study of production of 103Pd and characterisation of possible contaminants in the proton irradiation of 103Rh up to 28 MeV. Nucl. Instrum. and Methods B170 (2000) 281 10.1016/S0168-583X(00)00190-7Search in Google Scholar
19 Blann, M.: ALICE-91, Statistical model code system with fission competition, RSIC code, PACKAGE PSR-146 (1991)Search in Google Scholar
20 Konobeyev, A. Y.; Broeders, C. H. M.; Fischer, U.; Mercatali, L.: Uncertainty in activation cross-section calculations at intermediate proton energies. Kerntechnik73 (2008) 1Search in Google Scholar
21 Broeders, C. H. M.; Konobeyev, A. Y.; Korovin, A. Y.; Lunev, V. P.; Blann, M.: ALICE/ASH–Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reaction at intermediate energies, FZK-7183 (2006) http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdfSearch in Google Scholar
22 Koning, A. J.; Hilaire, S.; Duijvestijn, M.: TALYS-1.2 A nuclear reaction program, User manual. NRG, Netherlands (2009)Search in Google Scholar
23 Sadeghi, M.; Ghanbarzadeh, A.; Enferadi, M.: Nuclear data for cyclotron production of 114mIn/114In and 140Nd/140Pr used in gamma camera monitoring, RIT, ERT and PET. Kerntechnik 75 (2010) 363Search in Google Scholar
24 Kakavand, T.; Sadeghi, M.; Alipoor, Z.: Nuclear model calculation on charged particle induced reactions to produce 85Sr for diagnostic and endotherapy. Kerntechnik75 (2010) 263Search in Google Scholar
25 Ziegler, J. F.; Biersack, J. P.; Littmark, U.: The stopping and range of ions in mater, SRIM code, USA, (2006)Search in Google Scholar
26 Marczenko, Z.: Spectrophotometric determination of elements, fourth ed. Wiley, New York, (1976) p. 601Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Comparison between CAREB code calculations and LOCA test results in the FUMEX III project
- Calculation of moderator circulation in IPHWR using a porosity approach
- Simulation of natural circulation in a rectangular loop using CFD code PHOENICS
- CFD analysis of passive autocatalytic recombiner interaction with atmosphere
- Review and investigations of oscillatory flow behaviour of a horizontal ceiling opening for nuclear containment and fire safety analysis
- CFD simulation of thermal discharge behaviour in the Kadra reservoir at the Kaiga atomic power station
- Inverse problems using Artificial Neural Networks in long range atmospheric dispersion
- Sipping tests for the irradiated fuel elements of the TR-2 research reactor
- Neutron multiplication in source driven subcritical nuclear systems
- Cyclotron production of 101Pd/101mRh radionuclide generator for radioimmunotherapy
- Investigation of cross sections of reactions used in neutron activation analysis
- Modified UN method for the reflected critical slab problem with forward and backward scattering
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Comparison between CAREB code calculations and LOCA test results in the FUMEX III project
- Calculation of moderator circulation in IPHWR using a porosity approach
- Simulation of natural circulation in a rectangular loop using CFD code PHOENICS
- CFD analysis of passive autocatalytic recombiner interaction with atmosphere
- Review and investigations of oscillatory flow behaviour of a horizontal ceiling opening for nuclear containment and fire safety analysis
- CFD simulation of thermal discharge behaviour in the Kadra reservoir at the Kaiga atomic power station
- Inverse problems using Artificial Neural Networks in long range atmospheric dispersion
- Sipping tests for the irradiated fuel elements of the TR-2 research reactor
- Neutron multiplication in source driven subcritical nuclear systems
- Cyclotron production of 101Pd/101mRh radionuclide generator for radioimmunotherapy
- Investigation of cross sections of reactions used in neutron activation analysis
- Modified UN method for the reflected critical slab problem with forward and backward scattering