Home Technology Correction of deposition predictions with data assimilation
Article
Licensed
Unlicensed Requires Authentication

Correction of deposition predictions with data assimilation

  • F. Gering
Published/Copyright: May 20, 2013
Become an author with De Gruyter Brill

Abstract

Model predictions for rapid assessment and prognosis of possible radiological consequences after an accidental release of radionuclides play an important role in nuclear emergency management. Radiological measurements (e. g., dose rate measurements) can be used to improve such model predictions. This paper describes a method for combining model predictions and measurements (data assimilation) in the deposition model of the European radiological decision support system RODOS. The data assimilation approach is based on the Ensemble Kalman Filter, a Monte Carlo variant of the Kalman filter.

Kurzfassung

Modellrechnungen zur schnellen Einschätzung und Prognose von möglichen radiologischen Konsequenzen nach einer unfallbedingten Freisetzung von Radio-nukliden spielen eine große Rolle im radiologischen Notfallmanagement. Zur Verbesserung dieser Modellrechnungen können in erster Linie radiologische Messungen (z. B. Messungen der Gammaortsdosisleistung) verwendet werden. Ein Verfahren zur Kombination von Modellergebnissen und Messungen (Datenassimilation) wird in dieser Arbeit für das Depositionsmodell des europäischen radiologischen Entscheidungshilfe-System RODOS vorgestellt. Das Verfahren beruht auf dem Ensemble Kalman Filter, eine Monte-Carlo Variante des Kalman Filters.

References

1 Rojas-Palma, C.; Madsen, H.; Gering, F.; Puch-Solis, R.; Turcanu, C.; Astrup, P.; Müller, H.; Richter, K.; Zheleznyak, M.; Treebushny, D.; Kolomeev, M.; Kamaev, D.; Wynn, H.: Data assimilation in the decision support system RODOS. Accepted for publication by Radiation Protection Dosimetry104 (1), 3140 (2003) 10.1093/oxfordjournals.rpd.a006160Search in Google Scholar PubMed

2 European Commission, RODOS – Decision Support System for Off-site Emergency Management in Europe, EUR-Report 19144 EN (2000)Search in Google Scholar

3 Kalman, R. E.: A new approach to linear filtering and prediction problems. Journal of Basic Engineering82 (1960) 35Search in Google Scholar

4 Gering, F.: Data assimilation methods for improving the prognoses of radionuclide deposition from radio-ecological models with measurements, Ph.D. Thesis, Leopold-Franzens-Universität Innsbruck, Austria, 145 pages (2005)Search in Google Scholar

5 Müller, H.; Pröhl, G.: ECOSYS-87: A Dynamic Model for Assessing Radiological Consequences of Nuclear Accidents. Health Physics64 (1993) 23210.1097/00004032-199303000-00002Search in Google Scholar PubMed

6 Evenzen, G.: The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean Dynamics53 (2003) 343Search in Google Scholar

Received: 2007-5-30
Published Online: 2013-05-20
Published in Print: 2007-08-01

© 2007, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Environmental monitoring in the case of a radiological event
  7. Technical Contributions/Fachbeiträge
  8. The revised program for measurements in intense operation mode according to AVV-IMIS
  9. Early emergency response by means of dispersion forecasting – emergency management of the Deutscher Wetterdienst in the context of national and international agreements
  10. Improvement, extension and integration of operational Decision Support Systems for nuclear emergency management (DSSNET)
  11. European approach to nuclear and radiological emergency management and rehabilitation strategies (EURANOS)
  12. Bilateral information and data exchange in case of nuclear emergencies in the German-Dutch border region
  13. Implementation of decision support systems in Austria
  14. Source term assessment as a basis for protective measures for the population in case of a nuclear accident in a nuclear power plant with radiological consequences
  15. Characterization of dose rate instruments for environmental radiation monitoring
  16. Rapid determination of strontium radionuclides in plants, fodder and foodstuffs
  17. Longitudinal dispersion of radioactive substances in Federal waterways
  18. Fast online system for forecasting environmental impact during an incident
  19. Harnessing monitoring measurements in urban environments for decision making after nuclear accidents
  20. Correction of deposition predictions with data assimilation
  21. Potentials and limits of electronic situation displays
  22. Requirements of emergency control managements on data and information for assessment of the radiological situation in case of a severe accident in a nuclear power plant
  23. deNIS IIplus – computer-assisted crisis management system
  24. Iodine Prophylaxis following nuclear accidents – a concept how to distribute potassium-iodide tablets out of the central stocks in the event of an accident
Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100346/html
Scroll to top button