Home Technology Irradiation damages in tantalum spallation target
Article
Licensed
Unlicensed Requires Authentication

Irradiation damages in tantalum spallation target

  • C. Villagrasa-Roussel , C. H. M. Broeders and A. Yu. Konobeyev
Published/Copyright: March 26, 2013
Become an author with De Gruyter Brill

Abstract

The irradiation by a high intensity proton beam of the spallation target in Accelerator Driven Systems (ADS) gives rise to structural damages that must be considered in the design and handling of such materials. In this work, some of these damages are evaluated in the case of the irradiation of a tantalum target. Tantalum was recently proposed as solid target in the case of low power systems. Unfortunately, not enough experimental data of spallation reactions in this material are available. Therefore, our calculations were made using MCNPX and the stand-alone version of the spallation codes INCL4+ABLA. Results of this work are the concentrations of spallation residues produced in the target after one year of irradiation and calculations of the activity derived. Also displacements per atom in the target material have been evaluated. Different components (elastic scattering and non-elastic reactions) of the displacement cross-sections were calculated with two different methods.

Kurzfassung

Die Bestrahlung eines Spallationstargets in einem Beschleuniger-getriebenen System (ADS) mit einem Protonenstrahl hoher Intensität führt zu Strukturschäden welche beim Entwurf und bei der Handhabe berücksichtigt werden müssen. In der vorliegende Arbeit werden einige dieser Schäden untersucht für den Fall einer Bestrahlung eines Targets aus Tantal. Tantal war vor einigen Jahren vorgeschlagen worden als Feststoff Target in ADS mit niedriger Leistung. Leider sind für dieses Material nur ungenügende experimentelle Daten verfügbar. Deshalb wurden Simulationsrechnungen durchgeführt mit dem Monte Carlo Code MCNPX und mit der Stand-alone Version des Spallations-Codes INCL4+ABLA. Die Ergebnisse dieser Untersuchungen sind die Konzentrationen der Spallationsprodukte nach einem Jahr der Bestrahlung und Berechnung der resultierenden zeitabhängigen Radioaktivität. Weiter wurden „Displacements per Atom“ (DPA) im Targetmaterial ermittelt. Dazu wurden verschiedene Komponenten (elastische Streuung und nicht-elastische Reaktionen) des DPA Querschnitts mit zwei verschiedenen Methoden bestimmt.

References

1Rubbia, C.et al.: TRADE final feasibility report-March 2002 by the working group on TRADE: TRIGA Accelerator Driven ExperimentSearch in Google Scholar

2Rubbia, C.et al.: TRADE (Triga accelerator driven experiment): A full experimental validation of the ADS concept. Proc. Accelerator Applications in a Nuclear Renaissance (AccApp'03), San Diego, California, June 1–5, (2003)Search in Google Scholar

3Agostini, P.et al.: The TRADE target design and development. Proc. Accelerator Applications in a Nuclear Renaissance (AccApp'03), San Diego, California, June 1–5, 2003. Krakowiak etal.: The TRADE solid target system design. Proc. in GLOBAL 2003, ANS/ENS International Winter Meeting, New Orleans, Louisiana, November 16–20, (2003)Search in Google Scholar

4Bertini, H. W.: Phys. Rev.188 (1969) 171110.1103/PhysRev.188.1711Search in Google Scholar

5Boudard, A.; Cugnon, J.; Leray, S.; Volant, C.: Phys. Rev.C66 (2002) 044615Search in Google Scholar

6Dresner, L.: Oak Ridge National Laboratory report, ORNL-TM-196Search in Google Scholar

7Junghans, A. R.et al.: Nucl. Phys. A629 (1998) 635Search in Google Scholar

8Audi, G.et al.: Nucl. Phys. A624 (1997) 1Search in Google Scholar

9Atchison, F.; Schaal, H.: Orihet3 Users' Guide Version 1.12, 22. March (2001)Search in Google Scholar

10Broeders, C. H. M.; Dagan, R.; Sanchez, V.; Travleev, A.: KAPROS-E: Modular program system for nuclear reactor analysis, status and results of selected applications. Proc. Reaktortagung, Duesseldorf (2004)Search in Google Scholar

11Norgett, M. J.; Robinson, M. T.; Torrens, I. M.: A proposed method of calculating displacements dose rates. Nucl. Eng. Des.33 (1975) 5010.1016/0029-5493(75)90035-7Search in Google Scholar

12Robinson, M. T.: Basic physics of radiation damage production. J. Nucl. Mater.216 (1994) 1Search in Google Scholar

13Lindhard, J.; Scharff, M.; SchiottH. E.: Range concepts and heavy ion ranges. K. Dan. Vidensk. Selsk. Mat. Fys. Medd., 33, N14 (1963) 1Search in Google Scholar

14Broeders, C. H. M.; Konobeyev, A. Yu.: Displacements cross-section for tantalum and tungsten irradiated with protons at energies up to 1GeV. J. Nucl. Mater.336 (2005) 20110.1016/j.jnucmat.2004.09.015Search in Google Scholar

15Broeders, C. H. M.; Konobeyev, A. Yu.; Villagrasa, C.: The neutron displacement cross-section for tantalum and tungsten at the intermediate energies. J. Nucl. Mater.342 (2005) 6876Search in Google Scholar

16 See http://wwwasd.web.cern.ch/wwwasd/pawSearch in Google Scholar

17Fischer, U.; Wiese, H.: Improved and consistent determination of the nuclear inventory of spent PWR fuel on the basis of cell burn up methods using KORIGEN KFK-3014; ORNL-TR-5043; January (1983)Search in Google Scholar

Received: 2005-9-29
Published Online: 2013-03-26
Published in Print: 2006-05-01

© 2006, Carl Hanser Verlag, München

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100283/html
Scroll to top button