Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
-
Aileen Lozsan
Abstract
The pulp of the fruit of Sapindus saponaria (soapnut tree) consists mainly of saponin. Surface-active characteristics of this raw saponin such as critical micelle concentration, area per molecule and, hydrophilic-lipophilic balance were investigated; this information is valuable to assess its implementation in different applications of industrial interest. By using surface tension measures and dynamic light scattering studies, the value of critical micelle concentration was found in the range of 0.03 – 0.046 g mL−1. Further increase in the concentration of crude saponin leads to a constant value of surface tension (44 mN m−1). These results were analyzed using the Gibbs adsorption isotherm yielding an estimated value of the area occupied per molecule at the air/water interface of 57.2 Å2. Besides, Griffin method was used to determine the hydrophilic-lipophilic balance value (14.3). Sapindus saponaria extract properties are comparable to that of commercial surfactants, hence it could be used as an economical biosurfactant.
Kurzfassung
Das Fruchtfleisch des Waschnussbaums (Sapindus saponaria) besteht hauptsächlich aus Saponin. Die oberflächenaktiven Eigenschaften dieses Rohsaponins, wie die kritische Mizellenbildungskonzentration, die Fläche pro Molekül und das hydrophilelipophile Gleichgewicht, wurden untersucht, um mit diesen Informationen die industriellen Verwendungsmöglickeiten des Saponins bewerten zu können. Mittels Messungen der Oberflächenspannung und der dynamischen Lichtstreuung wurde die kritische Mizellenbildungskonzentration im Bereich von 0,03 – 0,046 g mL−1 gefunden. Eine weitere Erhöhung der Konzentration an Rohsaponin führt zu einem konstanten Wert der Oberflächenspannung (44 mN m−1). Diese Ergebnisse wurden unter Verwendung der Gibbs-Adsorptionsisotherme analysiert, wodurch sich für den minimalen Platzbedarf des Rohsaponins an der Luft/Wasser-Grenzfläche ein Wert von 57,2 Ų ergab. Außerdem wurde die Griffin-Methode zur Bestimmung des hydrophilen-lipophilen HLB-Wertes (14.3) verwendet. Die Eigenschaften des Sapindus saponaria-Extrakts sind mit denen handelsüblicher Tenside vergleichbar; daher kann er als ökonomisches Biosurfactant verwendet werden.
References
1. Sjoblom J. : Encyclopedic handbook of emulsion technology, Marcel Dekker Press, New York (2001). 10.1201/9781420029581Search in Google Scholar
2. Griffin W. C. : Classification of surface active agents by “HLB”, J. Soc. Cosmetic.1 (1949) 311–326.Search in Google Scholar
3. Sparg S. G. , LightM. E. and Van StadenJ.: Biological activities and distribution of plant saponins, J. Ethnopharmacol.94 (2004) 219–243. 10.1016/j.jep.2004.05.016Search in Google Scholar
4. Mukhopadhyay S. , HashimM. A., SahuJ. N., YusoffI. and GuptaB. S.: Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soil, J. Env. Sci.25 (2013) 2247–2256. 10.1016/S1001-0742(12)60295-2Search in Google Scholar
5. Das D. , PanigrahiS., MisraP. K. and NayakA.: Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant, Energy & Fuels.22 (2008) 1865–1872. 10.1021/ef7006563Search in Google Scholar
6. Sarin J. L. and BeriM. L.: Extraction of saponin from soapnut, Ind. Eng. Chem.31 (1939) 712–713. 10.1021/ie50354a012Search in Google Scholar
7. Grover R. K. , RoyA. D., RoyR., JoshiS. K., SrivastavaV. and AroraS. K.: Complete 1H and 13C NMR assignments of six saponins from Sapindus trifoliatus, Magn. Reson. Chem.43 (2005) 1072–1076. 10.1002/mrc.1675Search in Google Scholar
8. Nord L. I. , KenneL. and JacobssonS. P.: Multivariate analysis of 1H NMR spectra for saponins from Quillaja saponaria Molina, Anal. Chim. Acta.446 (2001) 197–207. 10.1016/S0003-2670(01)00934-5Search in Google Scholar
9. Tsuzuki J. K. , SvidzinT. L., ShinobuC. S., SilvaL. F., Rodrigues-FilhoE., CortezD. A. and FerreiraI. C.: Antifungal activity of the extracts and saponins from Sapindus saponaria L, Ann. Brazilian Acad. Sci.79 (2007) 577–583. 10.1590/s0001-37652007000400002Search in Google Scholar
10. Meyer-Albiero A. L. , Aboin-Sertié,J. A. and BacchiE. M.: Antiulcer activity of Sapindus saponaria L. in the rat, J. Ethnopharmacol.82 (2002) 41–44. 10.1016/S0378-8741(02)00094-6Search in Google Scholar
11. Song X. and HuS.: Adjuvant activities of saponins from traditional chinese medicinal herbs, Vaccine27 (2009) 4883–4890. 10.1016/j.vaccine.2009.06.033Search in Google Scholar
12. Man S. , GaoW., ZhangY., HuangL. and LiuC.: Antitumor and antimetastatic activities of Rhizoma Paridis saponins, Steroids74 (2009) 1051–1056. 10.1016/j.steroids.2009.08.004Search in Google Scholar
13. Haddad M. , LaurensV. and Lacaille-DuboisM. A.: Induction of apoptosis in a leukemia cell line by triterpene saponins from Albizia adianthifolia, Bioorg. Med. Chem.12 (2004) 4725–4734. 10.1016/j.bmc.2004.06.025Search in Google Scholar
14. Sundfeld E. , KrochtaJ. M. and RichardsonT. J.: Separation of cholesterol from butteroil using quillaja saponins. II. Effects of temperature, agitation and concentration of quillaja solution, Food Process. Eng.16 (1993) 207–227. 10.1111/j.1745-4530.1993.tb00317.xSearch in Google Scholar
15. Liu J. and HenkelT.: Traditional Chinese medicine (TCM): Are polyphenols and saponins the key ingredients triggering biological activities?Cur. Med. Chem.9 (2002) 1483–1485. 10.2174/0929867023369709Search in Google Scholar
16. Mitra S. and DunganS. R.: Micellar properties of quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties, J. Agric. Food. Chem.45 (1997) 1587–1595. 10.1021/jf960349zSearch in Google Scholar
17. Yang Y. , LeserM. E., SherA. A. and McClementsD. J.: Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®), Food Hydrocolloid.30 (2013) 589–596. 10.1016/j.foodhyd.2012.08.008Search in Google Scholar
18. Shi J. , ArunasalamK., YeungD., KakudaY., MittalG. and JiangY.: Saponins from edible legumes: Chemistry, processing, and health benefits, J. Med. Food.7 (2004) 67–78. 10.1089/109662004322984734Search in Google Scholar
19. Ghagi R. , SatputeS. K., ChopadeB. A. and BanpurkarA. G.: Study of Functional Properties of Sapindus mukorossi as a Potential Bio-surfactant, Indian J. Sci Technol.4 (2011) 530–533. 10.17485/ijst/2011/v4i5/30055Search in Google Scholar
20. Balakrishnan S. , VarugheseS. and DeshpandeA. P.: Micellar characterization of saponin from Sapindus Mukorossi, Tenside Surf. Det.43 (2006) 262–268. 10.3139/113.100315Search in Google Scholar
21. Mulligan C. N. , YongR. N. and GibbsB. F.: Surfactant-enhanced remediation of contaminated soil: a review, Eng. Geology.60 (2001) 371–380. 10.1016/S0013-7952(00)00117-4Search in Google Scholar
22. Song S. , ZhuL. Z. and ZhouW. J.: Simultaneous removal of phenanthrene and cadmium from contaminated soils by saponin, a plant-derived biosurfactant, Environ. Pollut.156 (2008) 1368–1370. 10.1016/j.envpol.2008.06.018Search in Google Scholar
23. Kommalapati R. R. , ValsarajK. T., ConstantW. D. and RoyD.: Soil flushing using colloidal gas aphron suspensions generated from a plant-based surfactant, J. Hazar. Mater.60 (1998) 73–87. 10.1016/S0304-3894(97)00156-8Search in Google Scholar
24. Pekdemir T. , OpurM. C. and UrumK.: Emulsification of crude oil water system using biosurfactants, Trans. IChemE. (B) Process Safety Environ. Prot. (B1)83 (2005) 38–46. 10.1205/psep.03176Search in Google Scholar
25. Urum K. and PekdemirT.: Evaluation of biosurfactants for crude oil contaminated soil washing, Chemosphere.57 (2004) 1139–1150. 10.1016/j.chemosphere.2004.07.048Search in Google Scholar
26. Reddy V. , ToratiR. S., OhS. and KimC.: Biosynthesis of gold nanoparticles assisted by Sapindus mukorossi gaertn. Fruit pericarp and their catalytic application for the reduction of p-nitroaniline, Ind. Eng. Chem. Res.52 (2013) 556–564. 10.1021/ie302037cSearch in Google Scholar
27. Schmitt C. , GrasslB., LespesG., DesbrièresJ., PellerinV. and ReynaudS.: Saponins: A renewable and biodegradable surfactant from its microwave-assisted extraction to the synthesis of monodisperse lattices, Biomacromol.15 (2014) 856–862. 10.1021/bm401708mSearch in Google Scholar
28. Huang H. C. , LiaoS. C., ChangF. R., KuoY. H. and WuY. C.: Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of Golden Apple Snails, Pomacea canaliculata, J. Agric. Food Chem.51 (2003) 4916–4919. 10.1021/jf0301910Search in Google Scholar
29. Topel O. , Acar ÇakirB., BudamaL. and HodaN.: Determination of critical micelle concentration of polybutadiene-block-poly(ethyleneoxide) diblock copolymer by fluorescence spectroscopy and dynamic light scattering, J. Mol. Liq.177 (2013) 40–43. 10.1016/j.molliq.2012.10.013Search in Google Scholar
30. http://www.malvern.com/common/downloads/campaign/MRK809-01.pdf.Search in Google Scholar
31. Pasquali R. and BregniC.: Balance hidrofílico-lipofilico (HLB) del colesterol y sus aplicaciones en emulsiones del tipo aceite en agua, Acta Farm. Bonaerense.25 (2006) 239–244.Search in Google Scholar
32. Verdinelli V. , MessinaP. V., SchulzP. C. and VuanoB.: Hydrophile-lipophile balance (HLB) of n-alkane phosphonic acids and theirs salts, Colloid Surface A.316 (2008) 131–135. 10.1016/j.colsurfa.2007.08.040Search in Google Scholar
33. Jönsson B. , LindmanB., HolmbergK. and KronbergB.: Surfactants and polymers in aqueous solution, John Wiley & Son Ltd, England (1998). 10.1002/0470856424Search in Google Scholar
34. Roland I. , PielG., DelattreL. and EvrardB.: Systematic characterization of oil-in-water emulsions for formulation designs, Int. J. Pharm.263 (2003) 85–94. 10.1016/S0378-5173(03)00364-8Search in Google Scholar
35. Han S. K. and KimN. H.: Surface activity of crude ginseng saponin, Arch. Pharm. Res.7 (1984) 109–113. 10.1007/BF02856622Search in Google Scholar
36. Tmáková L. , Sekretár,S. and SchmidtS.: Plant-derived surfactants as an alternative to synthetic surfactants: surface and antioxidant activities, Chemical Papers70 (2015) 188–196. 10.1515/chempap-2015-0200Search in Google Scholar
37. Rosen M. J. : Surfactants and Interfacial Phenomena, Willey-Interscience Press, New York (1988). 10.1002/0471670561Search in Google Scholar
38. Fenta A. D. : Surface and thermodynamic studies of micellization of surfactants in binary mixtures of 1,2-ethanediol and 1,2,3-propanetriol with water, Int. J. Phys. Sci.10 (2015) 276–288. 10.5897/IJPS2015.4288Search in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review
- Origin, Properties, Production and Purification of Microbial Surfactants as Molecules with Immense Commercial Potential
- Novel Surfactants
- Determination of Surface-Active Characteristics of a Natural Surfactant Extracted from Sapindus Saponaria
- Environmental Chemistry
- Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
- Washing Technology
- Influence of Water Circulation in Household Washing Machines on Cleaning Performance
- Physical Chemistry
- Approach of Different Properties of Alkylammonium Surfactants using Artificial Intelligence and Response Surface Methodology
- Micellar Parameters of Cationic Surfactant Cetylpyridinium Bromide in Aqueous Solutions of Amino Acids at Different Temperatures: Conductometric, Surface Tension, Volumetric and Viscosity Study
- Cloud Point of Mixed Ionic-Nonionic Surfactant Solutions in the Presence of Inorganic Salts
- Surface/Interfacial Tension, Wettability and Foaming Properties of Bi-Component Nonylphenol Alkyl Sulfonates based on Linear Alpha Olefin
- Application
- Characterization and Surface Active Properties of Aliphatic Glycerol Acetal Disodium Sulfosuccinates
- A Comparative Study on the Cloud Point Extraction Behavior of Copper(II) from Sulphate Medium by N,N′-Bis(Salicylidene)Ethylenediamine using Triton X-100 and Tergitol 15-S-7 as Non-ionic Surfactants