Home Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits
Article
Licensed
Unlicensed Requires Authentication

Effect of Contaminated Water with Laundry Detergent on Foxtail Millet Root and Physiological Traits

  • Hassan Heidari , Maliheh Yosefi , Shahryar Sasani and Iraj Nosratti
Published/Copyright: March 3, 2017
Become an author with De Gruyter Brill

Abstract

Foxtail millet is a short life cycle plant and known as a drought tolerant crop. Nowadays, contaminated wastewater with laundry detergent is used for irrigation. A pot experiment was conducted to evaluate the effect of contaminated water with laundry detergent on foxtail millet root and physiological traits. Contaminated water (concentration of 0, 0.1, 1 and 10 g l−1 of laundry detergent) and irrigation interval (1, 2 and 3 days) made the factors. Results showed that drought and contamination decreased chlorophyll, root number, root dry weight, root volume and root surface area. High concentrations of laundry detergent decreased the leaf relative water content. The sodium content of root was increased under drought and moderate concentration of laundry detergent, but the root potassium content was decreased by drought and detergent.

Kurzfassung

Die Kolbenhirse (italienische Borstenhirse) hat einen kurzen Lebenszyklus und ist als eine trockenheitsresistente Pflanze bekannt. Zur Bewässerung wird heutzutage mit Waschmittel kontaminiertes Wasser verwendet. Ein Topfexperiment wurde durchgeführt, um den Einfluss des mit Waschmittel kontaminierten Wassers auf die Kolbenhirsewurzel und die physiologischen Merkmale zu beurteilen. Die Bewertungsfaktoren waren das kontaminierte Wasser mit Waschmittelkonzentrationen von 0, 0.1, 1 und 10 g l−1 und ein Bewässerungsintervall von 1, 2 und 3 Tagen. Die Ergebnisse zeigten, dass Trockenheit und Kontamination das Chlorophyll, die Wurzelzahl, das Wurzeltrockengewicht, das Wurzelvolumen und die Wurzeloberfläche verringert haben. Hohe Konzentrationen von Waschmittel verringerten den relativen Wassergehalt im Blatt. Der Natriumgehalt der Wurzel wurde bei Trockenheit und moderater Konzentration des Waschmittels erhöht, aber der Kaliumgehalt in den Wurzeln wurde durch Trockenheit und Waschmittel verringert.


* Correspondence address, Dr. Hassan Heidari, Razi University, Faculty of Agriculture, Department of Agronomy and Plant Breeding, Kermanshah, Iran, E-Mail:

Dr. Hassan Heidari was born in May 1981. He completed his Ph. D. in 2011 from University of Tehran, Tehran. He is working as Assistant Professor, Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran.

Eng. Maliheh Yosefi studied for her M. Sc. at Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran. She was graduated in 2015.

Dr. Shahryar Sasani was born in in Feb 1972. He completed his Ph. D. in 2009 from University of Tehran, Tehran. He is working as Assistant Professor, Head of Research Department, Horticultural Crops Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AREEO, Kermanshah, Iran

Dr. Iraj Nosratti was born in in March 1981. He completed his Ph. D. in 2012 from University of Tehran, Tehran. He is working as Assistant Professor, Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran.


References

1. Abdalla M. M. and El-KhoshibanN. H.: The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic and hormonal contents of two Triticium aestivum cultivars, Journal of Applied Sciences Research3 (12) (2007) 2062–2074.Search in Google Scholar

2. Abu-Al-Basal M. A. and YasseenB. T.: Changes in growth variables and potassium content in leaves of black barley in response to NaCl, Braz. J. Plant Physiol.21 (2009) 261269. 10.1590/S1677-04202009000400002Search in Google Scholar

3. Alyemeny M. N. : The effect of drought on growth and dry matter allocation in seedling of Vigna ambacensis L., J. King Saud Univ.10 (1998) 4151.Search in Google Scholar

4. Bahrani A. : Effect of salinity on growth, ions distribution, accumulation and chlorophyll concentrations in two canola (Brassica napus L.) cultivars, American-Eurasian J. Agric. and Environ. Sci.13 (2013) 683689. 10.5829/idosi.aejaes.2013.13.05.1952Search in Google Scholar

5. Bail M. L. , JeuffroyM. H., BouchardC. and BarbortinA.: Is it possible to forecast the grain quality and yield of different varieties of winter wheat from Minolta SPAD Meter measurement?Eur. J. Agron.23 (2005) 379391. 10.1016/j.eja.2005.02.003Search in Google Scholar

6. Bastide B. , SipesD., HannJ. and TingI. P.: Effect of severe water stress on aspects of crassulacean acid metabolism in xerosicyos, Plant Physiol.103 (1993) 10891096. 10.1104/pp.103.4.1089Search in Google Scholar

7. Benjamin J. G. and NielsenD. C.: Water deficit effects on root distribution of soybean, field pea and chickpea, Field Crop Res.97 (2006) 248253. 10.1016/j.fcr.2005.10.005Search in Google Scholar

8. Bhutta W. M. , IbrahimM., AkhtarJ., ShahzadA., Tanveer-ul-HaqM. and Anwar-ul-HaqA.: Comparative performance of sunflower (Helianthus annus L.) genotypes against Nacl salinity, Caderno de pesquisa serie biologia19 (2004) 718.Search in Google Scholar

9. Bing-Song Z. , De-AnJ., PingW. U., Xiao-YanW., QingL. U. and Ni-YanW.: Relation of root growth of rice seedling with nutrition and water use efficiency under different water supply conditions, Rice Science13 (4) (2006) 291–298.Search in Google Scholar

10. Brink M. : Setaria italica (L.) P. Beauv. [Internet] Record from Protabasee. BrinkM., and BelayG. (Editors). PROTA (Plant Resources of Tropical Africa/Ressources vegetales de I'Afrique tropicale), Wageningen, Netherlands. Retrieved May 25, 2010, from http://database.prota.org/search.htm.Search in Google Scholar

11. Bybordi A. : Study effect of salinity on some physiologic and morphologic properties of two grape cultivars, Life Sci. J.9 (2012) 10921101.Search in Google Scholar

12. Darra B. L. and RaghuvanshiC. S.: Irrigation Management, Vol. 1, Atlantic Publishers and Distributors, New Delhi, India (1999) 590.Search in Google Scholar

13. Delgadillo-Mirquez L. , LopesF., TaidiB.and PareaucD.: Nitrogen and phosphate removal from wastewater with a mixed microalgae and bacteria culture, Biotechnology Reports11 (2016) 1826. 10.1016/j.btre.2016.04.003Search in Google Scholar

14. Duncan D. B. : Multiple range and multiple F tests, Biometrics11 (1955) 142. 10.2307/3001478Search in Google Scholar

15. Duruoha C. , PifferC. R. and SilvaP. A.: Corn (Zea mays L.) root length density and root diameter as affected by soil compaction and soil water content, Arriga.Botucatu12 (2007) 1426.Search in Google Scholar

16. Eshghizadeh H. R. , KafiM. and NezamiA.: Effect of NaCl salinity on the pattern and rate of root development of blue panic grass (Panicum antidotale Retz.), Journal of Greenhouse Culture Science and Technology5 (2011) 1328.Search in Google Scholar

17. Hasan S. H. , RaiS. and RupainwarD. C.: Removal of zinc from wastewater by water hyacinth, Indian Journal of Chemical Technology10 (2003) 274280.Search in Google Scholar

18. Honisch M. , BrandsB., WeideM., SpeckmannH. D., StammingerR. and P.Bockmühl,; Antimicrobial efficacy of laundry detergents with regard to time and temperature in domestic washing machines, Tenside Surfactants Detergents53 (6) (2016) 547–552. 10.3139/113.110465Search in Google Scholar

19. Issayeva A. U. , SyrlybayevaE. Zh., ZhymadullayevaA. I. and BalgabekovaA.: The effect of detergents on the anatomical changes in the roots of beans, Journal of Educational Policy and Entrepreneurial Research2 (2) (2015) 18–22.Search in Google Scholar

20. Jovanić B. R. , Bojović,S., Panić,B., Radenković,B. and Despotović,M.: The effect of detergent as polluting agent on the photosynthetic activity and chlorophyll content in bean leaves, health2 (5) (2010) 395–399.Search in Google Scholar

21. Jomova K. and MorovicM.: Effect of heavy metal treatment on molecular changes in root tips of Lupinus luteus L., Czech J. Food Sci.27 (2009) S386S389.Search in Google Scholar

22. Kang S. , ShiW., CaoH. and ZhangJ.: Alternate watering in soil vertical profile improved water use efficiency of maize (Zea mays), Field Crop Res.77 (2002) 3141. 10.1016/S0378-4290(02)00047-3Search in Google Scholar

23. Kang S. , LiangZ., PanY., ShiP. and ZhangJ.: Alternate furrow irrigation for maize production in an arid area, Agr. Water Manage.45 (2000) 267274. 10.1016/S0378-3774(00)00072-XSearch in Google Scholar

24. Marschner H. : Mineral Nutrition of Higher Plants. Second edition, Academic Press, UK Caccorro (1995) 889.Search in Google Scholar

25. Munns R. , JamesR. A. and LauchliA.: Approaches to increasing the salt tolerance of wheat and other cereals, J. Exp. Bot.57 (2006) 10251043. 10.1093/jxb/erj100Search in Google Scholar

26. Newman E. I. : A method of estimating the total length of root in a sample, J. Appli. Ecol.3 (1966) 139145. 10.2307/2401670Search in Google Scholar

27. Nezami A. , KhazaeiH. R., Boroumand RezazadehZ. and HosseiniA.: Effects of drought stress and defoliation on sunflower (Helianthus annuus) in controlled conditions, Desert12 (2008) 99104.Search in Google Scholar

28. Rickard W. H. : Sodium and potassium accumulation by greasewood and hopsage leaves, Bot. Gaz.126 (2) (1965) 116119. 10.1086/336304Search in Google Scholar

29. Saeed R. , MirbaharA. A., JahanB. and ZehraA.: Effect of grey water (soap water) irrigation on growth and root nodules of medicinal plant (Sesbania grandiflora), Fuuast J. Biol.5 (1) (2015) 115–121.Search in Google Scholar

30. Safarnejad A. and HamidiH.: Study of morphological characters of Foeniculum vulgare under salt stress, Iranian Journal of Rangelands Forests Plant Breeding and Genetic Research16 (1) (2008) 125–140.Search in Google Scholar

31. Sawadogo B. , SouM., HijikataN., SangareD., MaigaA. H. and FunamizuN.: Effect of detergents from greywater on irrigated plants: Case of okra (Abelmoschus esculentus) and lettuce (Lactuca sativa), Journal of Arid Land Studies24 (1) (2014) 117–120.Search in Google Scholar

32. Schutzendubel A. and PolleA.: Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization, J. Exp. Bot.53 (2002) 13511365. 10.1093/jexbot/53.372.1351Search in Google Scholar

33. Shannon M. C. : Breeding, Selection and the Genetics of Salt Tolerance, in: StaplesR. C. and G. H., (Eds), Toenniessn Salinity Tolerance in Plants, John Wiley & Sons (1986) 231252.Search in Google Scholar

34. Siddique M. R. B. , HamidA. and IslamM. S.: Drought stress effects on water relations of wheat, Bot. Bull. Acad. Sin41 (2000) 3539.Search in Google Scholar

35. Sinclair T. R. and LudlowM. M.: Who taught plants thermodynamics? The unfulfilled potential of plant water potential, Aust. J. Plant Physiol33 (1985) 213217.Search in Google Scholar

36. Suhendrayatna Marwan , AndrianiR., FajrianaY. and Elvitriana.: Removal of municipal wastewater BOD, COD, and TSS by phyto-reduction: A laboratory–scale comparison of aquatic plants at different species Typha latifolia and Saccharum spontaneum, International Journal of Engineering and Innovative Technology2 (2012) 333337.Search in Google Scholar

37. Turner N. C. and KramerP. J.: Adaptation of plant to water and high temperature stress, Wiley Interscience, New York (1980).Search in Google Scholar

38. Zhu J. K. : Regulation of ion homeostasis under salt stress, Current Opinion in Plant Biology6 (2003) 441445. 10.1016/S1369-5266(03)00085-2Search in Google Scholar

Received: 2015-10-28
Accepted: 2016-12-05
Published Online: 2017-03-03
Published in Print: 2017-03-15

© 2017, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110487/html
Scroll to top button