Home Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma
Article
Licensed
Unlicensed Requires Authentication

Micelle Based Spectrofluorimetric Determination of Chloroquine Phosphate in Commercial Formulation and Human Plasma

  • M. Rasul Jan , Jasmin Shah , M. Aamir Javed and Nageen Yousaf
Published/Copyright: November 17, 2014
Become an author with De Gruyter Brill

Abstract

Simple, sensitive and economic spectrofluorimetric method has been described for the determination of chloroquine phosphate in pure form, pharmaceutical formulations and spiked human plasma. In the developed method, fluorescence intensity of chloroquine phosphate was enhanced with 0.4 M sodium dodecyl sulfate in basic media of pH 10 at room temperature. The excitation and emission wavelengths of the fluorescent chloroquine phosphate are 330 nm and 369 nm respectively. The developed approach has a broad linear range (0.03–5 μg mL−1) with a correlation coefficient of 0.9976. The limit of detection (LOD) and limit of quantification (LOQ) was found to be 3.38 × 10−3 μg mL−1 and 1.12 × 10−2 μg mL−1 respectively. The common additives and co-administered medications were investigated for their interferences effect in the assay. The method was validated statistically through recovery studies and successfully applied to chloroquine phosphate determination in bulk powder, pharmaceutical preparation and spiked human plasma samples. The percent recoveries were found to be in the range of 99.42–100.46 % for bulk powder, 97.48–101.21 % for pharmaceutical formulations and 96.49–98.48 % for spiked human plasma.

Kurzfassung

Es wird eine einfache, empfindliche und wirtschaftliche spektrofluorimetrische Methode für die Bestimmung von Chloroquindiphosphat in reiner Form, in pharmazeutischen Formulierungen und im menschlichen Plasma beschrieben. Mit der entwickelten Methode konnte die Intensität der Fluoreszenz von Chloroquindiphosphat durch Zugabe von 0,4 M Natriumdodecylsulfat im basischen Medium (pH 10) bei Raumtemperatur gesteigert werden. Die Anregungs- und Emissionswellenlängen von Chloroquindiphosphat sind 330 nm und 369 nm. Die entwickelte Methode hat einen breiten linearen Bereich (0.03–5 μg mL−1) mit einem Korrelationskoeffizienten von 0,9976. Die Nachweisgrenze (limit of detection LOD) und die Bestimmungsgrenze (limit of quantification LOQ) betrugen 3.38 × 10−3 μg mL−1 bzw. 1.12 × 10−2 μg mL−1. Die herkömmlichen Additive und Kombinationsmedikamente wurden im Hinblick auf Interferenzen in der Probe untersucht. Die Methode wurde mittels Studien zur Wiederfindung von Chloroquindiphosphat in reinem Pulver, in pharmazeutischen Zubereitungen und in aufgestockten Humanplasmaproben statistisch validiert. Die prozentualen Wiederfindungsraten lagen zwischen 99.42–100.46 % beim reinen Pulver, zwischen 97.48–101.21 % bei den pharmazeutischen Zubereitungen und zwischen 96.49–98.48 % bei den aufgestockten Humanplasmaproben.


* Correspondence address, Mrs. Prof. J. Shah, Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan. Fax: 92-91-9216652, E-Mail:

Professor Jasmin Shah, PhD: Professor of Analytical Chemistry in the Institute of Chemical Sciences, University of Peshawar. Actively involved in method development for quantification of drugs and different types of organic and inorganic species.

Professor Muhammad Rasul Jan: Professor of Analytical and Environmental Chemistry. Actively involved in method development for pharmaceutical drugs, pesticides and solid phase extraction of organic compounds.

Mr. Aamir Javed: Ph. D. scholar working under the supervion of Professor Rasul Jan and Professor Jasmin Shah.

Ms. Nageen Yousaf: Ph. D. scholar working under the supervion of Professor Jasmin Shah and Professor Rasul Jan.


References

1. Ashton, R., Hawk, J. and Magnus, I.: Brit. J. Dermatol.111 (1984) 609613. 10.1111/j.1365-2133.1984.tb06632.xSearch in Google Scholar

2. De Argila, D., Gonzalo, A., Pimentel, J. and Rovira, I.: Dermatology.195 (1997) 284285. 10.1159/000245964Search in Google Scholar

3. Panayi, G., Neill, W., Duthie, J. and McCormick, J.: Ann. Rheum. Dis.32 (1973) 316318. 10.1136/ard.32.4.316.Search in Google Scholar

4. Verbeeck, R., Junginger, H., Midha, K., Shah, V. and Barends, D.: J. Pharm. Sci.94 (2005) 13891395. 10.1002/jps.20343.Search in Google Scholar

5. Lamballerie, X. D., Boisson, V., Reynier, J. C., Enault, S., Charrel, R. N., Flahault, A., Roques, P. and Grand, R. L.: Vector. Borne. Zoonotic. Dis.8 (2008) 837840. 10.1089/vbz.2008.0049.Search in Google Scholar

6. Liang, Y. D., Song, J. F., Yang, X. F. and Guo, W.: Talanta62 (2004) 757763. 10.1016/j.talanta.2003.09.017.Search in Google Scholar

7. Dwivedi, A., Saxena, D. and Singh, S.: J. Pharmaceut. Biomed. Anal.33 (2003) 851858. 10.1016/S0731-7085(03)00355-8Search in Google Scholar

8. Samanidou, V. F., Evaggelopoulou, E. N. and Papadoyannis, I. N.: J. Pharmaceut. Biomed. Anal.38 (2005) 2128. 10.1016/j.jpba.2004.12.005Search in Google Scholar

9. Volin, P.: J. Chromatogr. B. Biomed. Sci. Appl.666 (1995) 347353. 10.1016/0378-4347(94)00584-RSearch in Google Scholar

10. Singhal, P., Gaur, A., Behl, V., Gautam, A., Varshney, B., Paliwal, J. and Batra, V.: J. Chromatogr. B852 (2007) 293299. 10.1016/j.jchromb.2007.01.032.Search in Google Scholar

11. Huang, Y., Pan, W., Guo, M. and Yao, S.: J. Chromatogr. A1154 (2007) 373378. 10.1016/j.chroma.2007.02.029.Search in Google Scholar

12. Pussard, E., Verdier, F. and Blayo, M. C.: J. Chromatogr. B. Biomed Sci Appl.374 (1986) 111118. 10.1016/S0378-4347(00)83258-2.Search in Google Scholar

13. Hodel, E., Zanolari, B., Mercier, T., Biollaz, J., Keiser, J., Olliaro, P., Genton, B. and Decosterd, L.: J. Chromatogr. B877 (2009) 867886. 10.1016/j.jchromb.2009.02.006Search in Google Scholar

14. Amin, A. S. and Issa, Y. M.: J. Pharmaceut. Biomed. Anal.31 (2003) 785794. 10.1016/S0731-7085(02)00334-5.Search in Google Scholar

15. Green, M. D., Nettey, H., Rojas, O. V., Pamanivong, C., Khounsaknalath, L., Ortiz, M. G., Newton, P. N., Fernández, F. M., Vongsack, L. and Manolin, O.: J. Pharmaceut. Biomed. Anal.43 (2007) 105110. 10.1016/j.jpba.2006.06.047.Search in Google Scholar

16. Khalil, S. M., Mohamed, G., Zayed, M. and Elqudaby, H.: Microchem. J.64 (2000) 181186. 10.1016/S0026-265X(99)00027-2.Search in Google Scholar

17. Nagaraja, P., Shrestha, A. K., Shivakumar, A. and Gowda, A. K.: J. Food Drug Anal.18 (2010) 239248.Search in Google Scholar

18. Zayed, M., Khalil, S. M. and El-Qudaby, H. M.: Spectrochim. Acta. A62 (2005) 461465. 10.1016/j.saa.2005.01.017.Search in Google Scholar

19. Idowu, O., Ajayi, F. and Salako, L.: Anal. Chim Acta.206 (1988) 345349. 10.1016/S0003-2670(00)80855-7.Search in Google Scholar

20. The U.S Pharmacopeia national formulary, 4th ed., United State Pharmacopeia convention, Inc., U.S pharmacopeia authority, Rockville, 2008, pp. 1736, ISBN 9789241563017.Search in Google Scholar

Received: 2013-12-18
Accepted: 2014-07-11
Published Online: 2014-11-17
Published in Print: 2014-11-17

© 2014, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110333/html
Scroll to top button