Home Solubilization of PCBs by Surfactant Solution: Minimization of Partitioning Loss of Surfactant
Article
Licensed
Unlicensed Requires Authentication

Solubilization of PCBs by Surfactant Solution: Minimization of Partitioning Loss of Surfactant

  • M. Müllerová , M. Šváb , Z. Vysopalová and T. Nováková
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

Studies of solubilization of organic contaminants by surfactants are complicated by the fact that the effective surfactant concentration is decreased by partitioning into the organic phase. This paper introduces an experimental setup for surfactant solubilization where the partitioning loss of surfactants is minimized. Using this setup, two anionic (sodium dodecyl sulphate and Spolapon AOS 146) and one nonionic surfactant (Novanik 0633 A) were compared. When comparing solubilization efficacies expressed as multiples of the critical micelle concentration, the two anionic surfactants were able to solubilize a higher amount of polychlorinated biphenyls. For lower surfactant concentrations, solubilization efficacies were similar for all surfactants. However, it is necessary to take into account that the critical micelle concentration of the nonionic surfactant is considerably lower.

Kurzfassung

Studien zur Solubilisierung von organischen Kontaminanten sind kompliziert, aufgrund der Tatsache, dass die effektive Tensidkonzentration durch Partitionierung in die organische Phase abnimmt. Diese Arbeit stellt einen Versuchsaufbau zur Tensidsolubilisierung vor, bei dem der Partitionierungsverlust an Tensiden minimiert worden ist. Unter Verwendung dieses Versuchsaufbaues wurden zwei anionische (Natriumdodecylsulfat und Spolapon AOS 146) und ein nichtionisches Tensid (Novanik 0633 A) gegenübergestellt. Beim Vergleich der Solubilisierungswirksamkeiten, angegeben als Mehrfaches der kritischen Mizellbildungskonzentration, sind die zwei anionischen Tenside in der Lage, höhere Mengen an polychlorierten Biphenylen zu solubilisieren. Für niedrigere Tensidkonzentrationen sind die Solubilisierungswirksamkeiten für alle Tenside ähnlich. Wichtig hierbei ist aber zu berücksichtigen, dass die kritische Mizellbildungskonzentration des nichtionischen Tensids wesentlich geringer ist.


Ing. Mgr. Martina Müllerová, Department of Environmental Chemistry, Institute of Chemical Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic, Tel.: +420220443804, Fax: +420220445029. E-mail:

Ing. Mgr. Martina Müllerová born 1980, studied at the Institute of Chemical Technology Prague (Faculty of Environmental Technology) and at Charles University in Prague (Institute for Environmental Studies). After concluding her Master studies in 2005, she started PhD. studies at the Institute of Chemical Technology Prague (Faculty of Environmental Technology).

Ing. Marek Šváb, PhD. born 1976, studied at the Institute of Chemical Technology Prague (Faculty of Environmental Technology). After concluding his PhD. studies in 2004, he works as a lecturer at the Institute of the Chemical Technology (Faculty of Environmental Technology).

Ing. Zuzana Vysopalová born 1983, studied at the Institute of Chemical Technology Prague (Faculty of Environmental Technology). After concluding her Master study in 2006, she works as safety engineer in VALEOAUTOKLIMATIZACE s.r.o, Rakovnik, Czech Republic.

Ing. Tereza Nováková born 1983, studied at the Institute of Chemical Technology in Prague (Faculty of Environmental Technology). After concluding her Master study in 2007, she started PhD. studies at the Institute of Chemical Technology Prague (Faculty of Environmental Technology).


References

1. Sabatini, D. A., Knox, R. C., Harwell, J. H. and Wu, B.: J. Contam. Hydrol.45 (2000) 99. 10.1016/S0169-7722(00)00121-2Search in Google Scholar

2. Butler, E. C. and Hayes, K. F.: Water Res.32 (1998) 1345. 10.1016/S0043-1354(97)00360-6Search in Google Scholar

3. Pennel, K. D., Abriola, L. M. and Weber, W. J.: Environ. Sci. Technol.27 (1993) 2332. 10.1021/es00048a005Search in Google Scholar

4. Holmberg, K., Jönsson, B., Kronberg, B. and Lindman, B.: Surfactants and Polymers in Aqueous Solution (2004) Wiley, Chichester.Search in Google Scholar

5. Dwarakanath, V., Kostarelos, K., Pope, G. A., Shotts, D. and Wade, W. H.: J. Contam. Hydrol.38 (1999) 465. 10.1016/S0169-7722(99)00006-6Search in Google Scholar

6. Boving, T. B. and Brusseau, M. L.: J. Contam. Hydrol.42 (2000) 51. 10.1016/S0169-7722(99)00077-7Search in Google Scholar

7. Zhong, L., Mayer, A. S. and Pope, G. A.: J. Contam. Hydrol.60 (2003) 55. 10.1016/S0169-7722(02)00063-3Search in Google Scholar

8. Park, S.-K. and Bielefeldt, A. R.: Water Res.39 (2005) 1388. 10.1016/j.watres.2005.01.009Search in Google Scholar

9. Diallo, M. S., Abriola, L. M. and Weber, W. J.: Environ. Sci. Technol.28 (1994) 1829. 10.1021/es00060a012Search in Google Scholar

10. Garon, D., Krivobok, S., Wouessidjewe, D. and Seigle-Murandi, F.: Chemosphere47 (2002) 303. 10.1016/S0045-6535(01)00299-5Search in Google Scholar

11. Zhou, W. and Zhu, L.: Colloid. Surface. A255 (2005) 145. 10.1016/j.colsurfa.2004.12.039Search in Google Scholar

12. Kile, D. E. and Chiou, C. T.: Environ. Sci. Technol.23 (1989) 832. 10.1021/es00065a012Search in Google Scholar

13. Li, J.-L. and Chen, B.-H.: Chem. Eng. Sci.57 (2002) 2825. 10.1016/S0009-2509(02)00169-0Search in Google Scholar

14. Jawitz, J. W., Annable, M. D., Rao, P. S. C. and Rhue, R. D.: Environ. Sci. Technol.32 (1998) 523. 10.1021/es970507iSearch in Google Scholar

15. Dwarakanath, V. and Pope, G. A.: Environ. Sci. Technol.34 (2000) 4842. 10.1021/es0009121Search in Google Scholar

16. Zhu, M. and Rhue, R. D.: Environ. Sci. Technol.34 (2000) 1985. 10.1021/es9811546Search in Google Scholar

17. Zhao, B., Zhu, L., Li, W. and Chen, B.: Chemosphere58 (2005) 33. 10.1016/j.chemosphere.2004.08.067Search in Google Scholar

18. Park, S. K. and Bielefeldt, A. R.: Water Res.37 (2003) 3412. 10.1016/S0043-1354(03)00237-9Search in Google Scholar

19. Sharmin, R., Ionnidis, M. A. and Legge, R. L.: J. Contam. Hydrol.82 (2006) 145. 10.1016/j.jconhyd.2005.10.001Search in Google Scholar

20. Crook, E. H., Fordyce, D. B. and Trebbi, G. F.: J. Coll. Sci.20 (1965) 191. 10.1016/0095-8522(65)90010-3Search in Google Scholar

21. Harusawa, F., Saito, T., Nakajima, H. and Fukushima, S.: J. Colloid Interf. Sci.74 (1980) 435. 10.1016/0021-9797(80)90212-XSearch in Google Scholar

22. Zimmerman, J., Kibbey, T. C. G., Cowell, M. A. and Hayes, K. F.: Environ. Sci. Technol.33 (1999) 169. 10.1021/es9802910Search in Google Scholar

23. Zhao, B., Zhu, L. and Yang, K.: Chemosphere62 (2005) 772. 10.1016/j.chemosphere.2005.04.080Search in Google Scholar

24. Bernardez, L. A. and Ghoshal, S.: J. Colloid Interf. Sci.320 (2008) 298. 10.1016/j.jcis.2007.12.035Search in Google Scholar

25. Prak, D. J. L. and Pritchard, P. H.: Water Res.36 (2002) 3463. 10.1016/S0043-1354(02)00070-2Search in Google Scholar

26. Chun, C. L., Lee, J.-J. and Park, J.-W.: Environ. Pollut.118 (2002) 307. 10.1016/S0269-7491(01)00304-9Search in Google Scholar

27. Fuguet, E., Rafols, C., Rosés, M. and Bosch, E.: Anal. Chim. Acta548 (2005) 95. 10.1016/j.aca.2005.05.069Search in Google Scholar

28. Hait, S. K. and Moulik, S. P.: J. Surfactants Deterg.4 (2001) 303. 10.1007/s11743-001-0184-2Search in Google Scholar

29. Reid, V. W., Longman, G. F. and Heinerth, E.: Tenside4 (1967) 292.Search in Google Scholar

Received: 2007-10-12
Published Online: 2013-04-05
Published in Print: 2008-07-01

© 2008, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.100378/html
Scroll to top button