Abstract
The stereoselective synthesis of sulfamisterin I and its unnatural analogues II and V in their protected form was achieved through a common strategy. The Wittig reaction of aldehydes VIII and IX with the C14 hydrophobic side-chain X served as the key C-C connecting transformation. Subsequent functional group inter-conversions in the coupling products XI and XX completed the total synthesis.
[1] Azuma, H., Tamagaki, S., & Ogino, K. (2000). Stereospecific total syntheses of sphingosine and its analogues from l-serine. The Journal of Organic Chemistry, 65, 3538–3541. DOI: 10.1021/jo991447x. http://dx.doi.org/10.1021/jo991447x10.1021/jo991447xSearch in Google Scholar
[2] Byun, H. S., Lu, X., & Bittman, R. (2006). Stereoselective total synthesis of serine palmitoyl-CoA transferase inhibitors. Synthesis, 2006, 2447–2474. DOI: 10.1055/s-2006-942475. http://dx.doi.org/10.1055/s-2006-94247510.1055/s-2006-942475Search in Google Scholar
[3] Gonda, J., Martinková, M., Raschmanová, J., & Balentová, E. (2006). Creation of quaternary stereocentres via [3,3]-sigmatropic rearrangement of allylic thiocyanates. A synthetic approach to (+)-myriocin. Tetrahedron: Asymmetry, 17, 1875–1882. DOI: 10.1016/j.tetasy.2006.06.032. http://dx.doi.org/10.1016/j.tetasy.2006.06.03210.1016/j.tetasy.2006.06.032Search in Google Scholar
[4] Hanada, K. (2003). Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochimica et Biophysica Acta, 1632, 16–30. DOI: 10.1016/s1388-1981(03)00059-3. http://dx.doi.org/10.1016/S1388-1981(03)00059-310.1016/S1388-1981(03)00059-3Search in Google Scholar
[5] Hansen, M. M., Harkness, A. R., Coffey, D. S., Bordwell, F. G., & Zhao, Y. (1995). Substrate acidities and conversion times for reactions of amides with di-tert-butyl dicarbonate. Tetrahedron Letters, 36, 8949–8952. DOI: 10.1016/0040-4039(95)01931-7. http://dx.doi.org/10.1016/0040-4039(95)01931-710.1016/0040-4039(95)01931-7Search in Google Scholar
[6] Kang, S. H., Kang, S. Y., Lee, H. S., & Buglass, A. J. (2005). Total synthesis of natural tert-alkylamino hydroxy carboxylic acids. Chemical Reviews, 105, 4537–4558. DOI: 10.1021/cr040608g. http://dx.doi.org/10.1021/cr040608g10.1021/cr040608gSearch in Google Scholar
[7] Liav, A., & Goren, M. B. (1984). Sulfate as a blocking group in alkali-catalyzed permethylation: an alternative synthesis of 3,4,6-tri-O-methyl-D-glucose. Carbohydrate Research, 131, C8–C10. DOI: 10.1016/0008-6215(84)85419-1. http://dx.doi.org/10.1016/0008-6215(84)85419-110.1016/0008-6215(84)85419-1Search in Google Scholar
[8] Martinková, M., Gonda, J., & Raschmanová, J. (2006). Novel furanoid α-substituted α-amino acid as a potent turn mimic in peptide synthesis. Molecules, 11, 564–573. DOI: 10.3390/11070564. http://dx.doi.org/10.3390/1107056410.3390/11070564Search in Google Scholar PubMed PubMed Central
[9] Martinková, M., Gonda, J., Raschmanová, J., & Uhríková, A. (2008). Stereoselective synthesis of both enantiomers of α-(hydroxymethyl)glutamic acid. Tetrahedron: Asymmetry, 19, 1879–1885. DOI: 10.1016/j.tetasy.2008.08.003. http://dx.doi.org/10.1016/j.tetasy.2008.08.00310.1016/j.tetasy.2008.08.003Search in Google Scholar
[10] Martinková, M., Gonda, J., Špaková, J., Slaninková, M., & Kuchár, J. (2010). Total synthesis of a protected form of sphingofungin E using the [3,3]-sigmatropic rearrangement of an allylic thiocyanate as the key reaction. Carbohydrate Research, 345, 2427–2437. DOI: 10.1016/j.carres.2010.09.016. http://dx.doi.org/10.1016/j.carres.2010.09.01610.1016/j.carres.2010.09.016Search in Google Scholar PubMed
[11] Martinková, M., Gonda, J., Uhríková, A., Špaková, J., & Kuchár, J. (2012a). An efficient synthesis of the polar part of sulfamisterin and its analogs. Carbohydrate Research, 352, 23–36. DOI: 10.1016/j.carres.2012.02.019. http://dx.doi.org/10.1016/j.carres.2012.02.01910.1016/j.carres.2012.02.019Search in Google Scholar PubMed
[12] Martinková, M., Gonda, J., Špaková, J., Kuchár, J., & Kožĭšek, J. (2012b). A stereoselective synthesis of an α-substituted α-amino acid as a substructure for the construction of myriocin. Tetrahedron: Asymmetry, 23, 536–546. DOI: 10.1016/j.tetasy.2012.04.012. http://dx.doi.org/10.1016/j.tetasy.2012.04.01210.1016/j.tetasy.2012.04.012Search in Google Scholar
[13] Mita, T., Fukuda, N., Roca, F. X., Kanai, M., & Shibasaki, M. (2007). Second generation catalytic asymmetric synthesis of Tamiflu: Allylic substitution route. Organic Letters, 9, 259–262. DOI: 10.1021/ol062663c. http://dx.doi.org/10.1021/ol062663c10.1021/ol062663cSearch in Google Scholar
[14] More, J. D., & Finney, N. S. (2002). A simple and advantageous protocol for the oxidation of alcohols with oiodoxybenzoic acid (IBX). Organic Letters, 4, 3001–3003. DOI: 10.1021/ol026427n. http://dx.doi.org/10.1021/ol026427n10.1021/ol026427nSearch in Google Scholar
[15] Ohfune, Y., & Shinada, T. (2005). Enatio- and diastereos-elective construction of α,α-disubstituted α-amino acids for the synthesis of biologically active compounds. European Journal of Organic Chemistry, 2005, 5127–5143. DOI: 10.1002/ejoc.200500434. http://dx.doi.org/10.1002/ejoc.20050043410.1002/ejoc.200500434Search in Google Scholar
[16] Payette, D. R., & Just, G. (1981). A total synthesis of the enantiomer of anhydromyriocin (anhydrothermozymocidin). Canadian Journal of Chemistry, 59, 269–282. DOI: 10.1139/v81-044. http://dx.doi.org/10.1139/v81-04410.1139/v81-044Search in Google Scholar
[17] Sanders, W. J., Manning, D. D., Koeller, K. M., & Kiessling, L. L. (1997). Synthesis of sulfated trisaccharide ligands for the selectins. Tetrahedron, 53, 16391–16422. DOI: 10.1016/s0040-4020(97)01024-7. http://dx.doi.org/10.1016/S0040-4020(97)01024-710.1016/S0040-4020(97)01024-7Search in Google Scholar
[18] Sano, S., Kobayashi, Y., Kondo, T., Takebayashi, M., Maruyama, S., Fujita, T., & Nagao, Y. (1995). Asymmetric total synthesis of ISP-I (myriocin, thermozymocidin), a potent immunosuppressive principle in the Isaria sinclairii metabolite. Tetrahedron Letters, 36, 2097–2100. DOI: 10.1016/0040-4039(95)00219-3. http://dx.doi.org/10.1016/0040-4039(95)00219-310.1016/0040-4039(95)00219-3Search in Google Scholar
[19] Satam, V., Harad, A., Rajule, R., & Pati, H. (2010). 2-Iodoxybenzoic acid (IBX): an efficient hypervalent iodine reagent. Tetrahedron, 66, 7659–7706. DOI: 10.1016/j.tet.2010.07.014. http://dx.doi.org/10.1016/j.tet.2010.07.01410.1016/j.tet.2010.07.014Search in Google Scholar
[20] Sato, H., Maeba, T., Yanase, R., Yamaji-Hasegawa, A., Kobayashi, T., & Chida, N. (2005). Total synthesis and biological activities of (+)-sulfamisterin (AB5366) and its analogues. The Journal of Antibiotics, 58, 37–49. DOI: 10.1038/ja.2005.4. http://dx.doi.org/10.1038/ja.2005.410.1038/ja.2005.4Search in Google Scholar PubMed
[21] Shioiri, T., Terao, Y., Irako, N., & Aoyama, T. (1998). Synthesis of topostins B567 and D654 (WB-3559D, flavolipin), DNA topoisomerase I inhibitors of bacterial origin. Tetrahedron, 54, 15701–15710. DOI: 10.1016/s0040-4020(98)00984-3. http://dx.doi.org/10.1016/S0040-4020(98)00984-310.1016/S0040-4020(98)00984-3Search in Google Scholar
[22] Yamaji-Hasegawa, A., Takahashi, A., Tetsuka, Y., Senoh, Y., & Kobayashi, T. (2005). Fungal metabolite sulfamisterin suppresses sphingolipid synthesis through inhibition of serine palmitoyltransferase. Biochemistry, 44, 268–277. DOI: 10.1021/bi048605l. http://dx.doi.org/10.1021/bi048605l10.1021/bi048605lSearch in Google Scholar PubMed
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine
- Production of l-tryptophan by enantioselective hydrolysis of d,l-tryptophanamide using a newly isolated bacterium
- Copper hydride-catalyzed reduction of electron-deficient olefins
- Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation
- Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic
- Synthesis and characterisation of Cu(II), Ni(II), and Zn(II) complexes of furfural derived from aroylhydrazones bearing aliphatic groups and their interactions with DNA
- Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode
- Influence of the B-site cation nature on dielectric properties of Ca2XBiO6 (X = Dy, Fe, Al) double perovskite
- Stereoselective total synthesis of protected sulfamisterin and its analogues
- Investigation of 3,5-dichlorosalicylate-copper(II)-(3-pyridylmethanol or N,N′-diethylnicotinamide) complex systems by EPR spectroscopy
- Heavy-metal extraction capability of chalcogenoic aminophosphines derived from 1-amino-4-methylpiperazine
- Electrical conductivity of systems based on Na3AlF6-SiO2 melt
Articles in the same Issue
- Headspace single-drop microextraction coupled with gas chromatography electron capture detection of butanone derivative for determination of iodine in milk powder and urine
- Production of l-tryptophan by enantioselective hydrolysis of d,l-tryptophanamide using a newly isolated bacterium
- Copper hydride-catalyzed reduction of electron-deficient olefins
- Efficient photodegradation of resorcinol with Ag2O/ZnO nanorods heterostructure under a compact fluorescent lamp irradiation
- Comparison of anthocyanins present in grapes of Vitis vinifera L. varieties and interspecific hybrids grown in the Czech Republic
- Synthesis and characterisation of Cu(II), Ni(II), and Zn(II) complexes of furfural derived from aroylhydrazones bearing aliphatic groups and their interactions with DNA
- Efficacy of zinc and tourmaline in mitigating corrosion of carbon steel in non-flow mode
- Influence of the B-site cation nature on dielectric properties of Ca2XBiO6 (X = Dy, Fe, Al) double perovskite
- Stereoselective total synthesis of protected sulfamisterin and its analogues
- Investigation of 3,5-dichlorosalicylate-copper(II)-(3-pyridylmethanol or N,N′-diethylnicotinamide) complex systems by EPR spectroscopy
- Heavy-metal extraction capability of chalcogenoic aminophosphines derived from 1-amino-4-methylpiperazine
- Electrical conductivity of systems based on Na3AlF6-SiO2 melt