Abstract
An alternative method has been developed for the anomeric deacetylation of fully acetylated carbohydrate derivatives using zinc acetate dihydrate as a catalyst in methanol under mild conditions. The experimental simplicity, low cost, acceptable yield, use of a readily handled acidic catalyst, and the environmentally benign nature are some of the advantages of this method.
[1] Baba, T., Kobayashi, A., Kawanami, Y., Inazu, K., Ishikawa, A., Echizenn, T., Murai, K., Aso, S., & Inomata, M. (2005). Characteristics of methoxycarbonylation of aromatic diamine with dimethyl carbonate to dicarbamate using a zinc acetate catalyst. Green Chemistry, 7, 159–165. DOI: 10.1039/b413334j. http://dx.doi.org/10.1039/b413334j10.1039/b413334jSearch in Google Scholar
[2] Boger, D. L., Teramoto, S., & Zhou, J. (1995). Key synthetic analogs of bleomycin A2 that directly address the effect and role of the disaccharide: Demannosylbleomycin A2 and α-D-mannopyranosyldeglycobleomycin A2. Journal of the American Chemical Society, 117, 7344–7356. DOI: 10.1021/ja00133a008. http://dx.doi.org/10.1021/ja00133a00810.1021/ja00133a008Search in Google Scholar
[3] Chittenden, G. J. F. (1988). A simplified synthesis of α-D-galactopyranose 1,3,4,6-tetraacetate. Carbohydrate Research, 183, 140–143. DOI: 10.1016/0008-6215(88)80055-7. http://dx.doi.org/10.1016/0008-6215(88)80055-710.1016/0008-6215(88)80055-7Search in Google Scholar
[4] Excoffier, G., Gagnaire, D., & Utille, J. P. (1975). Coupure sélective par l’hydrazine des groupements acétyles anom`eres de résidus glycosyles acétylés. Carbohydrate Research, 39, 368–373. DOI: 10.1016/s0008-6215(00)86150-9. http://dx.doi.org/10.1016/S0008-6215(00)86150-910.1016/S0008-6215(00)86150-9Search in Google Scholar
[5] Fiandor, J., & De Las Heras, F. G. (1986). Selective benzoylation of 2-deoxy-D-arabino-hexose: synthesis of 3,6-di-O-benzoyl-2,4-dideoxy-D-threo-hexopyranose. Carbohydrate Research, 153, 325–329. DOI: 10.1016/s0008-6215(00)90275-1. http://dx.doi.org/10.1016/S0008-6215(00)90275-110.1016/S0008-6215(00)90275-1Search in Google Scholar
[6] Grynkiewicz, G., Fokt, I., Szeja, W., & Fitak, H. (1989). Chemoselective deprotection of 1-O-acyl sugar derivatives. Journal of Chemical Research, Synopses, 5, 152–153. Search in Google Scholar
[7] Hennen, W. J., Sweers, H. M., Wang, Y. F., & Wong, C. H. (1988). Enzymes in carbohydrate synthesis. Lipase-catalyzed selective acylation and deacylation of furanose and pyranose derivatives. Journal of Organic Chemistry, 53, 4939–4945. DOI: 10.1021/jo00256a008. http://dx.doi.org/10.1021/jo00256a00810.1021/jo00256a008Search in Google Scholar
[8] Herzig, J., & Nudelman, A. (1986). Regioselective heterogeneous O-deacylation of polyacylated sugars. Carbohydrate Research, 153, 162–167. DOI: 10.1016/s0008-6215(00)90208-8. http://dx.doi.org/10.1016/S0008-6215(00)90208-810.1016/S0008-6215(00)90208-8Search in Google Scholar
[9] Ikeda, K., Morimoto, T., & Kakiuchi, K. (2010). Utilization of aldoses as a carbonyl source in cyclocarbonylation of enynes. Journal of Organic Chemistry, 75, 6279–6282. DOI: 10.1021/jo1012288. http://dx.doi.org/10.1021/jo101228810.1021/jo1012288Search in Google Scholar PubMed
[10] Jiang, J. Q., Biggins, J. B., & Thorson, J. S. (2000). A general enzymatic method for the synthesis of natural and “unnatural” UDP- and TDP-nucleotide sugars. Journal of the American Chemical Society, 122, 6803–6804. DOI: 10.1021/ja001444y. http://dx.doi.org/10.1021/ja001444y10.1021/ja001444ySearch in Google Scholar
[11] Khan, R., Konowicz, P. A., Gardossi, L., Matulova, M., & Degennaro, S. (1996). Regioselective deacetylation of fully acetylated mono- and di-saccharides with hydrazine hydrate. Australian Journal of Chemistry, 49, 293–298. http://dx.doi.org/10.1071/CH996029310.1071/CH9960293Search in Google Scholar
[12] Knerr, L., Pannecoucke, X., & Luu, B. (1998). Efficient synthesis of hydrophilic phosphodiester derivatives of lipophilic alcohols via the glycosyl hydrogenphosphonate method. Tetrahedron Letters, 39, 273–274. DOI: 10.1016/s0040-4039(97)10510-x. http://dx.doi.org/10.1016/S0040-4039(97)10510-X10.1016/S0040-4039(97)10510-XSearch in Google Scholar
[13] Li, Y. X., Li, Y. W., Wei, Z., & Guan, H. S. (2004). An alternative method for anomeric deacetylation of per-acetylated carbohydrates. Chinese Journal of Chemistry, 22, 117–118. DOI: 10.1002/cjoc.20040220125. http://dx.doi.org/10.1002/cjoc.2004022012510.1002/cjoc.20040220125Search in Google Scholar
[14] Mikamo, M. (1989). Facile 1-O-deacylation of per-O-acylaldoses. Carbohydrate Research, 191, 150–153. DOI: 10.1016/0008-6215(89)85056-6. http://dx.doi.org/10.1016/0008-6215(89)85056-610.1016/0008-6215(89)85056-6Search in Google Scholar
[15] Mohankumar, P., Ilango, K., Santhanakrishan, V. P., Radhakrishnan, V., & Narasimhan, S. (2010). Ethylenediamine: an effective reagent for deacetylation of natural products. Journal of Asian Natural Products Research, 12, 851–858. DOI: 10.1080/10286020.2010.507545. http://dx.doi.org/10.1080/10286020.2010.50754510.1080/10286020.2010.507545Search in Google Scholar
[16] Nudelman, A., Herzig, J., Gottlieb, H. E., Keinan, E., & Sterling, J. (1987). Selective deacetylation of anomeric sugar acetates with tin alkoxides. Carbohydrate Research, 162, 145–152. DOI: 10.1016/0008-6215(87)80209-4. http://dx.doi.org/10.1016/0008-6215(87)80209-410.1016/0008-6215(87)80209-4Search in Google Scholar
[17] Rowell, R. M., & Feather, M. S. (1967). Synthesis and properties of anomerically unsubstituted hepta-O-acetyl disaccharides. Carbohydrate Research, 4, 486–491. DOI: 10.1016/s0008-6215(00)81840-6. http://dx.doi.org/10.1016/S0008-6215(00)81840-610.1016/S0008-6215(00)81840-6Search in Google Scholar
[18] Sambaiah, T., Fanwick, P. E., & Cushman, M. (2001). Regioselective 1-O-acyl hydrolysis of peracylated glycopyranoses by mercuric chloride and mercuric oxide. Synthesis, 2001, 1450–1452. DOI: 10.1055/s-2001-16084. http://dx.doi.org/10.1055/s-2001-1608410.1055/s-2001-16084Search in Google Scholar
[19] Schmidt, R. R., & Kinzy, W. (1994). Anomeric-oxygen activation for glycoside synthesis: The trichloroacetimidate method. Advances in Carbohydrate Chemistry and Biochemistry, 50, 21–123. DOI: 10.1016/s0065-2318(08)60150-x. http://dx.doi.org/10.1016/S0065-2318(08)60150-X10.1016/S0065-2318(08)60150-XSearch in Google Scholar
[20] Sim, M. M., Kondo, H., & Wong, C. H. (1993). Synthesis of dibenzyl glycosyl phosphites using N, N-diethylphosphoramidite as phosphorylating reagent: an effective route to glycosyl phosphates, nucleotides, and glycosides. Journal of the American Chemical Society, 115, 2260–2267. DOI: 10.1021/ja00059a023. http://dx.doi.org/10.1021/ja00059a02310.1021/ja00059a023Search in Google Scholar
[21] Tiwari, P., & Misra, A. K. (2006). Selective removal of anomeric O-acetate groups in carbohydrates using HClO4-SiO2. Tetrahedron Letters, 47, 3573–3576. DOI: 10.1016/j.tetlet.2006.03.050. http://dx.doi.org/10.1016/j.tetlet.2006.03.05010.1016/j.tetlet.2006.03.050Search in Google Scholar
[22] Tran, A. T., Deydier, S., Bonnaffé, D., & Le Narvor, C. (2008). Regioselective green anomeric deacetylation catalyzed by lanthanide triflates. Tetrahedron Letters, 49, 2163–2165. DOI: 10.1016/j.tetlet.2008.01.106. http://dx.doi.org/10.1016/j.tetlet.2008.01.10610.1016/j.tetlet.2008.01.106Search in Google Scholar
[23] Watanabe, K., Itoh, K., Araki, Y., & Ishido, Y. (1986). A comparison of bis(tributyltin) oxide, potassium cyanide, and potassium hydroxide as reagents for the regioselective 1-Odeacetylation of fully acetylated sugars. Carbohydrate Research, 154, 165–176. DOI: 10.1016/s0008-6215(00)90030-2. http://dx.doi.org/10.1016/S0008-6215(00)90030-210.1016/S0008-6215(00)90030-2Search in Google Scholar
[24] Wei, G., Zhang, L., Cai, C., Cheng, S., & Du, Y. (2008). Selective cleavage of sugar anomeric O-acyl groups using FeCl3 · 6H2O. Tetrahedron Letters, 49, 5488–5491. DOI: 10.1016/j.tetlet.2008.07.035. http://dx.doi.org/10.1016/j.tetlet.2008.07.03510.1016/j.tetlet.2008.07.035Search in Google Scholar
[25] Zhang, J., Fu, J., Si, W., Wang, X., Wang, Z., & Tang, J. (2011). A highly efficient deprotection of the 2,2,2-trichloroethyl group at the anomeric oxygen of carbohydrates. Carbohydrate Research, 346, 2290–2293. DOI: 10.1016/j.carres.2011.08.007. 10.1016/j.carres.2011.08.007Search in Google Scholar
[26] Zhang, J., & Kováč P., (1999). An alternative method for regioselective, anomeric deacylation of fully acylated carbohydrates. Journal of Carbohydrate Chemistry, 18, 461–469. DOI: 10.1080/07328309908544010. http://dx.doi.org/10.1080/0732830990854401010.1080/07328309908544010Search in Google Scholar
[27] Zhao, X., Zhang, Y., & Wang, Y. (2004). Synthesis of propylene carbonate from urea and 1,2-propylene glycol over a zinc acetate catalyst. Industrial & Engineering Chemistry Research, 43, 4038–4042. DOI: 10.1021/ie049948i. http://dx.doi.org/10.1021/ie049948i10.1021/ie049948iSearch in Google Scholar
[28] Zhu, Y., & Kong, F. (2000). A facile synthesis of the tetrasaccharide repeating unit of mannoglucan from Microellobosporia grisea. Carbohydrate Research, 329, 199–205. DOI: 10.1016/s0008-6215(00)00160-9. http://dx.doi.org/10.1016/S0008-6215(00)00160-910.1016/S0008-6215(00)00160-9Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat
- Utilisation of industrial waste for ferrite pigments production
- Determination of anti-oxidant capacity and content of phenols, phenolic acids, and flavonols in Indian and European gooseberry
- Photodynamic efficiency of porphyrins encapsulated in polysilsesquioxanes
- Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation
- Synthesis, anti-oxidant activity, and cytotoxicity of salicyloyl derivatives of estra-1,3,5(10)-triene and androst-5-ene
- Formation of dioxospiroindene[1,3]thiazine and thioxoindeno[2,1-d]imidazolone derivatives from alkenylidene-hydrazinecarbothioamides
- N-alkylation of ethylenediamine with alcohols catalyzed by CuO-NiO/γ-Al2O3
- Selective synthesis of E-isomers of aldoximes via a domino aza-Michael/retro-Michael reaction
- Selective anomeric deacetylation using zinc acetate as catalyst
- Solubility of methane in octane + ethanol at temperatures from 303.15 K to 333.15 K and pressures up to 12.01 MPa
Articles in the same Issue
- Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat
- Utilisation of industrial waste for ferrite pigments production
- Determination of anti-oxidant capacity and content of phenols, phenolic acids, and flavonols in Indian and European gooseberry
- Photodynamic efficiency of porphyrins encapsulated in polysilsesquioxanes
- Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation
- Synthesis, anti-oxidant activity, and cytotoxicity of salicyloyl derivatives of estra-1,3,5(10)-triene and androst-5-ene
- Formation of dioxospiroindene[1,3]thiazine and thioxoindeno[2,1-d]imidazolone derivatives from alkenylidene-hydrazinecarbothioamides
- N-alkylation of ethylenediamine with alcohols catalyzed by CuO-NiO/γ-Al2O3
- Selective synthesis of E-isomers of aldoximes via a domino aza-Michael/retro-Michael reaction
- Selective anomeric deacetylation using zinc acetate as catalyst
- Solubility of methane in octane + ethanol at temperatures from 303.15 K to 333.15 K and pressures up to 12.01 MPa