Home Life Sciences Selective anomeric deacetylation using zinc acetate as catalyst
Article
Licensed
Unlicensed Requires Authentication

Selective anomeric deacetylation using zinc acetate as catalyst

  • Eda Kaya EMAIL logo , Fatih Sonmez , Mustafa Kucukislamoglu and Mehmet Nebioglu
Published/Copyright: February 29, 2012
Become an author with De Gruyter Brill

Abstract

An alternative method has been developed for the anomeric deacetylation of fully acetylated carbohydrate derivatives using zinc acetate dihydrate as a catalyst in methanol under mild conditions. The experimental simplicity, low cost, acceptable yield, use of a readily handled acidic catalyst, and the environmentally benign nature are some of the advantages of this method.

[1] Baba, T., Kobayashi, A., Kawanami, Y., Inazu, K., Ishikawa, A., Echizenn, T., Murai, K., Aso, S., & Inomata, M. (2005). Characteristics of methoxycarbonylation of aromatic diamine with dimethyl carbonate to dicarbamate using a zinc acetate catalyst. Green Chemistry, 7, 159–165. DOI: 10.1039/b413334j. http://dx.doi.org/10.1039/b413334j10.1039/b413334jSearch in Google Scholar

[2] Boger, D. L., Teramoto, S., & Zhou, J. (1995). Key synthetic analogs of bleomycin A2 that directly address the effect and role of the disaccharide: Demannosylbleomycin A2 and α-D-mannopyranosyldeglycobleomycin A2. Journal of the American Chemical Society, 117, 7344–7356. DOI: 10.1021/ja00133a008. http://dx.doi.org/10.1021/ja00133a00810.1021/ja00133a008Search in Google Scholar

[3] Chittenden, G. J. F. (1988). A simplified synthesis of α-D-galactopyranose 1,3,4,6-tetraacetate. Carbohydrate Research, 183, 140–143. DOI: 10.1016/0008-6215(88)80055-7. http://dx.doi.org/10.1016/0008-6215(88)80055-710.1016/0008-6215(88)80055-7Search in Google Scholar

[4] Excoffier, G., Gagnaire, D., & Utille, J. P. (1975). Coupure sélective par l’hydrazine des groupements acétyles anom`eres de résidus glycosyles acétylés. Carbohydrate Research, 39, 368–373. DOI: 10.1016/s0008-6215(00)86150-9. http://dx.doi.org/10.1016/S0008-6215(00)86150-910.1016/S0008-6215(00)86150-9Search in Google Scholar

[5] Fiandor, J., & De Las Heras, F. G. (1986). Selective benzoylation of 2-deoxy-D-arabino-hexose: synthesis of 3,6-di-O-benzoyl-2,4-dideoxy-D-threo-hexopyranose. Carbohydrate Research, 153, 325–329. DOI: 10.1016/s0008-6215(00)90275-1. http://dx.doi.org/10.1016/S0008-6215(00)90275-110.1016/S0008-6215(00)90275-1Search in Google Scholar

[6] Grynkiewicz, G., Fokt, I., Szeja, W., & Fitak, H. (1989). Chemoselective deprotection of 1-O-acyl sugar derivatives. Journal of Chemical Research, Synopses, 5, 152–153. Search in Google Scholar

[7] Hennen, W. J., Sweers, H. M., Wang, Y. F., & Wong, C. H. (1988). Enzymes in carbohydrate synthesis. Lipase-catalyzed selective acylation and deacylation of furanose and pyranose derivatives. Journal of Organic Chemistry, 53, 4939–4945. DOI: 10.1021/jo00256a008. http://dx.doi.org/10.1021/jo00256a00810.1021/jo00256a008Search in Google Scholar

[8] Herzig, J., & Nudelman, A. (1986). Regioselective heterogeneous O-deacylation of polyacylated sugars. Carbohydrate Research, 153, 162–167. DOI: 10.1016/s0008-6215(00)90208-8. http://dx.doi.org/10.1016/S0008-6215(00)90208-810.1016/S0008-6215(00)90208-8Search in Google Scholar

[9] Ikeda, K., Morimoto, T., & Kakiuchi, K. (2010). Utilization of aldoses as a carbonyl source in cyclocarbonylation of enynes. Journal of Organic Chemistry, 75, 6279–6282. DOI: 10.1021/jo1012288. http://dx.doi.org/10.1021/jo101228810.1021/jo1012288Search in Google Scholar PubMed

[10] Jiang, J. Q., Biggins, J. B., & Thorson, J. S. (2000). A general enzymatic method for the synthesis of natural and “unnatural” UDP- and TDP-nucleotide sugars. Journal of the American Chemical Society, 122, 6803–6804. DOI: 10.1021/ja001444y. http://dx.doi.org/10.1021/ja001444y10.1021/ja001444ySearch in Google Scholar

[11] Khan, R., Konowicz, P. A., Gardossi, L., Matulova, M., & Degennaro, S. (1996). Regioselective deacetylation of fully acetylated mono- and di-saccharides with hydrazine hydrate. Australian Journal of Chemistry, 49, 293–298. http://dx.doi.org/10.1071/CH996029310.1071/CH9960293Search in Google Scholar

[12] Knerr, L., Pannecoucke, X., & Luu, B. (1998). Efficient synthesis of hydrophilic phosphodiester derivatives of lipophilic alcohols via the glycosyl hydrogenphosphonate method. Tetrahedron Letters, 39, 273–274. DOI: 10.1016/s0040-4039(97)10510-x. http://dx.doi.org/10.1016/S0040-4039(97)10510-X10.1016/S0040-4039(97)10510-XSearch in Google Scholar

[13] Li, Y. X., Li, Y. W., Wei, Z., & Guan, H. S. (2004). An alternative method for anomeric deacetylation of per-acetylated carbohydrates. Chinese Journal of Chemistry, 22, 117–118. DOI: 10.1002/cjoc.20040220125. http://dx.doi.org/10.1002/cjoc.2004022012510.1002/cjoc.20040220125Search in Google Scholar

[14] Mikamo, M. (1989). Facile 1-O-deacylation of per-O-acylaldoses. Carbohydrate Research, 191, 150–153. DOI: 10.1016/0008-6215(89)85056-6. http://dx.doi.org/10.1016/0008-6215(89)85056-610.1016/0008-6215(89)85056-6Search in Google Scholar

[15] Mohankumar, P., Ilango, K., Santhanakrishan, V. P., Radhakrishnan, V., & Narasimhan, S. (2010). Ethylenediamine: an effective reagent for deacetylation of natural products. Journal of Asian Natural Products Research, 12, 851–858. DOI: 10.1080/10286020.2010.507545. http://dx.doi.org/10.1080/10286020.2010.50754510.1080/10286020.2010.507545Search in Google Scholar

[16] Nudelman, A., Herzig, J., Gottlieb, H. E., Keinan, E., & Sterling, J. (1987). Selective deacetylation of anomeric sugar acetates with tin alkoxides. Carbohydrate Research, 162, 145–152. DOI: 10.1016/0008-6215(87)80209-4. http://dx.doi.org/10.1016/0008-6215(87)80209-410.1016/0008-6215(87)80209-4Search in Google Scholar

[17] Rowell, R. M., & Feather, M. S. (1967). Synthesis and properties of anomerically unsubstituted hepta-O-acetyl disaccharides. Carbohydrate Research, 4, 486–491. DOI: 10.1016/s0008-6215(00)81840-6. http://dx.doi.org/10.1016/S0008-6215(00)81840-610.1016/S0008-6215(00)81840-6Search in Google Scholar

[18] Sambaiah, T., Fanwick, P. E., & Cushman, M. (2001). Regioselective 1-O-acyl hydrolysis of peracylated glycopyranoses by mercuric chloride and mercuric oxide. Synthesis, 2001, 1450–1452. DOI: 10.1055/s-2001-16084. http://dx.doi.org/10.1055/s-2001-1608410.1055/s-2001-16084Search in Google Scholar

[19] Schmidt, R. R., & Kinzy, W. (1994). Anomeric-oxygen activation for glycoside synthesis: The trichloroacetimidate method. Advances in Carbohydrate Chemistry and Biochemistry, 50, 21–123. DOI: 10.1016/s0065-2318(08)60150-x. http://dx.doi.org/10.1016/S0065-2318(08)60150-X10.1016/S0065-2318(08)60150-XSearch in Google Scholar

[20] Sim, M. M., Kondo, H., & Wong, C. H. (1993). Synthesis of dibenzyl glycosyl phosphites using N, N-diethylphosphoramidite as phosphorylating reagent: an effective route to glycosyl phosphates, nucleotides, and glycosides. Journal of the American Chemical Society, 115, 2260–2267. DOI: 10.1021/ja00059a023. http://dx.doi.org/10.1021/ja00059a02310.1021/ja00059a023Search in Google Scholar

[21] Tiwari, P., & Misra, A. K. (2006). Selective removal of anomeric O-acetate groups in carbohydrates using HClO4-SiO2. Tetrahedron Letters, 47, 3573–3576. DOI: 10.1016/j.tetlet.2006.03.050. http://dx.doi.org/10.1016/j.tetlet.2006.03.05010.1016/j.tetlet.2006.03.050Search in Google Scholar

[22] Tran, A. T., Deydier, S., Bonnaffé, D., & Le Narvor, C. (2008). Regioselective green anomeric deacetylation catalyzed by lanthanide triflates. Tetrahedron Letters, 49, 2163–2165. DOI: 10.1016/j.tetlet.2008.01.106. http://dx.doi.org/10.1016/j.tetlet.2008.01.10610.1016/j.tetlet.2008.01.106Search in Google Scholar

[23] Watanabe, K., Itoh, K., Araki, Y., & Ishido, Y. (1986). A comparison of bis(tributyltin) oxide, potassium cyanide, and potassium hydroxide as reagents for the regioselective 1-Odeacetylation of fully acetylated sugars. Carbohydrate Research, 154, 165–176. DOI: 10.1016/s0008-6215(00)90030-2. http://dx.doi.org/10.1016/S0008-6215(00)90030-210.1016/S0008-6215(00)90030-2Search in Google Scholar

[24] Wei, G., Zhang, L., Cai, C., Cheng, S., & Du, Y. (2008). Selective cleavage of sugar anomeric O-acyl groups using FeCl3 · 6H2O. Tetrahedron Letters, 49, 5488–5491. DOI: 10.1016/j.tetlet.2008.07.035. http://dx.doi.org/10.1016/j.tetlet.2008.07.03510.1016/j.tetlet.2008.07.035Search in Google Scholar

[25] Zhang, J., Fu, J., Si, W., Wang, X., Wang, Z., & Tang, J. (2011). A highly efficient deprotection of the 2,2,2-trichloroethyl group at the anomeric oxygen of carbohydrates. Carbohydrate Research, 346, 2290–2293. DOI: 10.1016/j.carres.2011.08.007. 10.1016/j.carres.2011.08.007Search in Google Scholar

[26] Zhang, J., & Kováč P., (1999). An alternative method for regioselective, anomeric deacylation of fully acylated carbohydrates. Journal of Carbohydrate Chemistry, 18, 461–469. DOI: 10.1080/07328309908544010. http://dx.doi.org/10.1080/0732830990854401010.1080/07328309908544010Search in Google Scholar

[27] Zhao, X., Zhang, Y., & Wang, Y. (2004). Synthesis of propylene carbonate from urea and 1,2-propylene glycol over a zinc acetate catalyst. Industrial & Engineering Chemistry Research, 43, 4038–4042. DOI: 10.1021/ie049948i. http://dx.doi.org/10.1021/ie049948i10.1021/ie049948iSearch in Google Scholar

[28] Zhu, Y., & Kong, F. (2000). A facile synthesis of the tetrasaccharide repeating unit of mannoglucan from Microellobosporia grisea. Carbohydrate Research, 329, 199–205. DOI: 10.1016/s0008-6215(00)00160-9. http://dx.doi.org/10.1016/S0008-6215(00)00160-910.1016/S0008-6215(00)00160-9Search in Google Scholar

Published Online: 2012-2-29
Published in Print: 2012-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0143-5/html
Scroll to top button