Abstract
A highly stereoselective synthesis of E-isomer of aldoximes was developed through a base-catalysed domino aza-Michael/retro-Michael reaction of hydroxylamine and 2-(R-benzylidene)malononitrile. This reaction generates (E)-aldoxime diastereomer in high yields (eight examples, isolated yields of 82-93 %), excellent diastereomeric purity (diastereomeric ratio higher than 95: 5 by 1H NMR), and proceeds under mild reaction conditions (aqueous NaOH, pH 12, room temperature, 4 h).
[1] Bruckner, R. (2002). Advanced organic chemistry: Reaction mechanisms. San Diego, CA, USA: Academic Press. Search in Google Scholar
[2] Chang, L. C. W., von Frijtag Drabbe Künzel, J. K., Mulder-Krieger, T., Spanjersberg, R. F., Roerink, S. F., van den Hout, G., Beukers, M. W., Brussee, J., & Ijzerman, A. P. (2005). A series of ligands displaying a remarkable agonistic-antagonistic profile at the adenosine A1 receptor. Journal of Medicinal Chemistry, 48, 2045–2053. DOI: 10.1021/jm049597+. http://dx.doi.org/10.1021/jm049597+10.1021/jm049597+Search in Google Scholar PubMed
[3] Crandall, J. K., & Reix, T. (1992). Dimethyldioxirane oxidation of primary amines. The Journal of Organic Chemistry, 57, 6759–6764. DOI: 10.1021/jo00051a017. http://dx.doi.org/10.1021/jo00051a01710.1021/jo00051a017Search in Google Scholar
[4] Crawford, R. J., & Woo, C. (1965). The conversion of metaand para-substituted benzaldoxime arenesulfonates to nitriles. Canadian Journal of Chemistry, 43, 1534–1544. DOI: 10.1139/v65-204. http://dx.doi.org/10.1139/v65-20410.1139/v65-204Search in Google Scholar
[5] Danoff, A., Franzen-Sieveking, M., Lichter, R. L., & Fanso-Free, S. N. Y. (1979). Characterization of coupling constants to nitrogen. Carbon-13 chemical shifts and carbon-nitrogen coupling constants of substituted benzaldoximes. Organic Magnetic Resonance, 12, 83–86. DOI: 10.1002/mrc.1270120208. http://dx.doi.org/10.1002/mrc.127012020810.1002/mrc.1270120208Search in Google Scholar
[6] Dalton, D. R., & Foley, H. G. (1973). O-Carbamoyloximes. The Journal of Organic Chemistry, 38, 4200–4203. DOI: 10.1021/jo00963a022. http://dx.doi.org/10.1021/jo00963a02210.1021/jo00963a022Search in Google Scholar
[7] Edwards, L., Isaac, M., Slassi, A., Sun, G. R., Xin, T., Minidis, A., & Dove, P. (2007). U.S. Patent No. 2007037816 (A1). Alexandria, VA, USA: U.S. Patent and Trademark Office. Search in Google Scholar
[8] Furniss, B. S., Hannaford, A. J., Smith, P. W. G., & Tatchell, A. R. (1989). Vogel’s textbook of practical organic chemistry (5th ed., Chapter 6.12.6, pp. 1047–1049). Harlow, UK: Pearson Education. Search in Google Scholar
[9] Gordon, M. S., Sojka, S. A., & Krause, J. G. (1984). Carbon-13 NMR of para-substituted hydrazones, phenylhydrazones, oximes, and oxime methyl ethers: substituent effects on the iminyl carbon. The Journal of Organic Chemistry, 49, 97–100. DOI: 10.1021/jo00175a019. http://dx.doi.org/10.1021/jo00175a01910.1021/jo00175a019Search in Google Scholar
[10] Guo, J. J., Jin, T. S., Zhang, S. L., & Li, T. S. (2001). TiO2/SO 42−: an efficient and convenient catalyst for preparation of aromatic oximes. Green Chemistry, 3, 193–195. DOI: 10.1039/b102067f. http://dx.doi.org/10.1039/b102067f10.1039/b102067fSearch in Google Scholar
[11] Jencks, W. P. (1959). Studies on the mechanism of oxime and semicarbazone formation. Journal of the American Chemical Society, 81, 475–481. DOI: 10.1021/ja01511a053. http://dx.doi.org/10.1021/ja01511a05310.1021/ja01511a053Search in Google Scholar
[12] Sandler, S. R., & Karo, W. (1983). Organic functional group preparation (Vol. III, Chapter 11). New York, NY, USA: Academic Press. Search in Google Scholar
[13] Sharghi, H., & Hosseini, M. (2002). Solvent-free and onestep Beckmann rearrangement of ketones and aldehydes by zinc oxide. Synthesis, 2002, 1057–1060. DOI: 10.1055/s-2002-31964. http://dx.doi.org/10.1055/s-2002-3196410.1055/s-2002-31964Search in Google Scholar
[14] Sharghi, H., & Sarvari, M. H. (2001). Selective synthesis of E and Z isomers of oximes. Synlett, 2001, 99–101. DOI: 10.1055/s-2001-9719. 10.1055/s-2001-9719Search in Google Scholar
[15] Smith, P. A. S., & Antoniades, E. P. (1960). The interplay of steric and electronic factors affecting geometrical isomerism of diaryl ketimine derivatives. Tetrahedron, 9, 210–229. DOI: 10.1016/0040-4020(60)80010-5. http://dx.doi.org/10.1016/0040-4020(60)80010-510.1016/0040-4020(60)80010-5Search in Google Scholar
[16] Song, B. A., Liu, X. H., Yang, S., Hu, D. Y., Jin, L. H., & Zhang, Y. T. (2005). Recent advance in synthesis and biological activity of oxime derivatives. Chinese Journal of Organic Chemistry, 25, 507–525. Search in Google Scholar
[17] Uno, T., Gong, B., & Schultz, P. G. (1994). Stereoselective antibody-catalyzed oxime formation. Journal of the American Chemical Society, 116, 1145–1146. DOI: 10.1021/ja00082a052. http://dx.doi.org/10.1021/ja00082a05210.1021/ja00082a052Search in Google Scholar
[18] Xie, J.W., Chen, W., Li, R., Zeng, M., Du, W., Yue, L., Chen, Y. C., Wu, Y., Zhu, J., & Deng, J. G. (2007). Highly asymmetric Michael addition to α, β-unsaturated ketones catalyzed by 9-amino-9-deoxyepiquinine. Angewandte Chemie International Edition, 46, 389–392. DOI: 10.1002/anie.200603612. http://dx.doi.org/10.1002/anie.20060361210.1002/anie.200603612Search in Google Scholar PubMed
[19] Xie, J. W., Yue, L., Xue, D., Ma, X. L., Chen, Y. C., Wu, Y., Zhu, J., & Deng, J. G. (2006). Organocatalytic and direct asymmetric vinylogous Michael addition of α, α-dicyanoolefins to α, β-unsaturated aldehydes. Chemical Communications, 2006, 1563–1565. DOI: 10.1039/b600647g. http://dx.doi.org/10.1039/b600647g10.1039/b600647gSearch in Google Scholar PubMed
[20] Xue, D., Chen, Y. C., Wang, Q. W., Cun, L. F., Zhu, J., & Deng, J. G. (2005). Asymmetric direct vinylogous Michael reaction of activated alkenes to nitroolefins catalyzed by modified Cinchona alkaloids. Organic Letters, 7, 5293–5296. DOI: 10.1021/ol052283b. http://dx.doi.org/10.1021/ol052283b10.1021/ol052283bSearch in Google Scholar PubMed
[21] Zvilichovsky, G., & Heller, L. (1972). A facile synthesis of antibenzaldoxime. Synthesis, 1972, 563–564. http://dx.doi.org/10.1055/s-1972-2193010.1055/s-1972-21930Search in Google Scholar
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat
- Utilisation of industrial waste for ferrite pigments production
- Determination of anti-oxidant capacity and content of phenols, phenolic acids, and flavonols in Indian and European gooseberry
- Photodynamic efficiency of porphyrins encapsulated in polysilsesquioxanes
- Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation
- Synthesis, anti-oxidant activity, and cytotoxicity of salicyloyl derivatives of estra-1,3,5(10)-triene and androst-5-ene
- Formation of dioxospiroindene[1,3]thiazine and thioxoindeno[2,1-d]imidazolone derivatives from alkenylidene-hydrazinecarbothioamides
- N-alkylation of ethylenediamine with alcohols catalyzed by CuO-NiO/γ-Al2O3
- Selective synthesis of E-isomers of aldoximes via a domino aza-Michael/retro-Michael reaction
- Selective anomeric deacetylation using zinc acetate as catalyst
- Solubility of methane in octane + ethanol at temperatures from 303.15 K to 333.15 K and pressures up to 12.01 MPa
Articles in the same Issue
- Characteristics of sorption of uncomplexed and complexed Pb(II) from aqueous solutions onto peat
- Utilisation of industrial waste for ferrite pigments production
- Determination of anti-oxidant capacity and content of phenols, phenolic acids, and flavonols in Indian and European gooseberry
- Photodynamic efficiency of porphyrins encapsulated in polysilsesquioxanes
- Hydrothermal synthesis of momordica-like CuO nanostructures using egg white and their characterisation
- Synthesis, anti-oxidant activity, and cytotoxicity of salicyloyl derivatives of estra-1,3,5(10)-triene and androst-5-ene
- Formation of dioxospiroindene[1,3]thiazine and thioxoindeno[2,1-d]imidazolone derivatives from alkenylidene-hydrazinecarbothioamides
- N-alkylation of ethylenediamine with alcohols catalyzed by CuO-NiO/γ-Al2O3
- Selective synthesis of E-isomers of aldoximes via a domino aza-Michael/retro-Michael reaction
- Selective anomeric deacetylation using zinc acetate as catalyst
- Solubility of methane in octane + ethanol at temperatures from 303.15 K to 333.15 K and pressures up to 12.01 MPa