Abstract
Activated sewage sludge samples obtained from two different waste water treatment plants were investigated by thermogravimetric analysis. Due to a very high content of water in the sludge samples, these had to be dried at 160°C in an electrical oven in order to remove all adsorbed water. To ensure pyrolysis conditions, nitrogen atmosphere was applied. The pyrolysis decomposition process was carried out in the temperature range from ambient temperature to 900°C at three different heating rates: 2 K min−1, 5 K min−1, 10 K min−1. TGA and DTG curves of the decomposition processes were obtained. Temperature of onset decomposition, final temperature of decomposition, maximum decomposition rate, and decomposition temperature were determined by thermogravimetric analysis for both sludge samples used. The main decomposition process takes place at temperatures in the range from 230°C to 500°C. Above this temperature, there are only small changes in the mass loss which are often attributed to the decomposition of carbonates present in the sewage sludge samples. To determine the apparent kinetic parameters such as the activation energy and the preexponential factor, the so called Friedman isoconversional method was used. Because of the requirements of this method, initial and final parts of the decomposition process, where crossings of the decomposition lines occurred, were cut off. Obtained dependencies of the apparent activation energies and preexponential factors as a function of conversion were used backwards to calculate the modeled decomposition process of sewage sludge and the experimental data were in good accordance with the data obtained by simulation.
[1] Biagini, E., Fantei, A., & Tognotti, L. (2008). Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta, 472, 55–63. DOI: 10.1016/j.tca.2008.03.015. http://dx.doi.org/10.1016/j.tca.2008.03.01510.1016/j.tca.2008.03.015Search in Google Scholar
[2] Bridgwater, A. V. (2004). Biomass fast pyrolysis. Thermal Science, 8(2), 21–49. http://dx.doi.org/10.2298/TSCI0402021B10.2298/TSCI0402021BSearch in Google Scholar
[3] Bridgwater, A. V., Toft, A. J., & Brammer, J. G. (2002). A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable and Sustainable Energy Reviews, 6, 181–246. DOI: 10.1016/S1364-0321(01)00010-7. http://dx.doi.org/10.1016/S1364-0321(01)00010-710.1016/S1364-0321(01)00010-7Search in Google Scholar
[4] Calvo, L. F., Otero, M., Jenkins, B. M., Garcia, A. I., & Morán, A. (2004). Heating process characteristics and kinetics of sewage sludge in different atmospheres. Thermochimica Acta, 409, 127–135. DOI: 10.1016/S0040-6031(03)00359-9. http://dx.doi.org/10.1016/S0040-6031(03)00359-910.1016/S0040-6031(03)00359-9Search in Google Scholar
[5] Di Blasi, C. (2008). Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science, 34, 47–90. DOI: 10.1016/j.pecs.2006.12.001. http://dx.doi.org/10.1016/j.pecs.2006.12.00110.1016/j.pecs.2006.12.001Search in Google Scholar
[6] Drtil, M., & Hutňan, M. (2007). Technologický projekt: časť procesy a technológie čistenia odpadových vôd (Technological project: processes and waste water cleaning technologies). Bratislava, Slovakia: Vydavatel’stvo NOI. ISBN 978-80-89088-57-7 Search in Google Scholar
[7] Folgueras, M. B., Díaz, R. M., Xiberta, J., & Prieto, I. (2003). Thermogravimetric analysis of the co-combustion of coal and sewage sludge. Fuel, 82, 2051–2055. DOI: 10.1016/S0016-2361(03)00161-3. http://dx.doi.org/10.1016/S0016-2361(03)00161-310.1016/S0016-2361(03)00161-3Search in Google Scholar
[8] Fonts, I., Azuara, M., Gea, G., & Murillo, M. B. (2009). Study of the pyrolysis liquids obtained from different sewage sludge. Journal of Analytical and Applied Pyrolysis, 85, 184–191. DOI: 10.1016/j.jaap.2008.11.003. http://dx.doi.org/10.1016/j.jaap.2008.11.00310.1016/j.jaap.2008.11.003Search in Google Scholar
[9] Fytili, D., & Zabaniotou, A. (2008). Utilization of sewage sludge in EU application of old and new methods—A review. Renewable and Sustainable Energy Reviews, 12, 116–140. DOI: 10.1016/j.rser.2006.05.014. http://dx.doi.org/10.1016/j.rser.2006.05.01410.1016/j.rser.2006.05.014Search in Google Scholar
[10] García Barneto, A., Ariza Carmona, J., Martín Alfonso, J. E., & Díaz Blanco, J. (2009). Kinetic models based in biomass components for the combustion and pyrolysis of sewage sludge and its compost. Journal of Analytical and Applied Pyrolysis, 86, 108–114. DOI: 10.1016/j.jaap.2009.04.011. http://dx.doi.org/10.1016/j.jaap.2009.04.01110.1016/j.jaap.2009.04.011Search in Google Scholar
[11] Gašparovič, L., Koreňová, Z., & Jelemenský, Ľ. (2009). Kinetic study of wood chips decomposition by TGA. Chemical Papers, 64, 174–181. DOI: 10.2478/s11696-009-0109-4. 10.2478/s11696-009-0109-4Search in Google Scholar
[12] Grønli, M. G., Várhegyi, G., & Di Blasi, C. (2002). Thermogravimetric analysis and devolatilization kinetics of wood. Industrial & Engineering Chemistry Research, 41, 4201–4208. DOI: 10.1021/ie0201157. http://dx.doi.org/10.1021/ie020115710.1021/ie0201157Search in Google Scholar
[13] Ji, A., Zhang, S., Lu, X., & Liu, Y. (2009). A new method for evaluating the sewage sludge pyrolysis kinetics. Waste Management, 30, 1225–1229. DOI: 10.1016/j.wasman.2009.10.003. http://dx.doi.org/10.1016/j.wasman.2009.10.00310.1016/j.wasman.2009.10.003Search in Google Scholar
[14] Kirch, K., Augenstein, D., Batmale, J. P., Benemann, J., Rutledge, B., & Salour, D. (2005). Biomethane from dairy waste. San Francisco, CA, USA: Sustainable Conservation. Search in Google Scholar
[15] Koreňová, Z., Juma, M., Annus, J., Markoš, J., & Jelemensky, L. (2006). Kinetics of pyrolysis and properties of carbon black from a scrap tire. Chemical Papers, 60, 422–426. DOI: 10.2478/s11696-006-0077-x. http://dx.doi.org/10.2478/s11696-006-0077-x10.2478/s11696-006-0077-xSearch in Google Scholar
[16] Kumar, A., Wang, L., Dzenis, Y. A., Jones, D. D., & Hanna, M. A. (2008). Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass and Bioenergy, 32, 460–467. DOI: 10.1016/j.biombioe.2007.11.004. http://dx.doi.org/10.1016/j.biombioe.2007.11.00410.1016/j.biombioe.2007.11.004Search in Google Scholar
[17] Li, Z., Liu, C., Chen, Z., Qian, J., Zhao, W., & Zhu, Q. (2009). Analysis of coals and biomass pyrolysis using the distributed activation energy model. Bioresource Technology, 100, 948–952. DOI: 10.1016/j.biortech.2008.07.032. http://dx.doi.org/10.1016/j.biortech.2008.07.03210.1016/j.biortech.2008.07.032Search in Google Scholar
[18] Mohan, D., Pittman, C. U., Jr., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 20, 848–889. DOI: 10.1021/ef0502397. http://dx.doi.org/10.1021/ef050239710.1021/ef0502397Search in Google Scholar
[19] Müller-Hagedorn, M., Bockhorn, H., Krebs, L., & Müller, U. (2003). A comparative kinetic study on the pyrolysis of three different wood species. Journal of Analytical and Applied Pyrolysis, 68–69, 231–249. DOI: 10.1016/S0165-2370(03)00065-2. http://dx.doi.org/10.1016/S0165-2370(03)00065-210.1016/S0165-2370(03)00065-2Search in Google Scholar
[20] Munir, S., Daood, S. S., Nimmo, W., Cunliffe, A. M., & Gibbs, B. M. (2009). Thermal analysis and devolatilization kinetics of cotton stalk, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresource Technology, 100, 1413–1418. DOI: 10.1016/j.biortech.2008.07.065. http://dx.doi.org/10.1016/j.biortech.2008.07.06510.1016/j.biortech.2008.07.065Search in Google Scholar PubMed
[21] Nowicki, L., Stolarek, P., Olewski, T., Bedyk, T., & Ledakowicz, S. (2008). Mechanism and kinetics of sewage sludge pyrolysis by thermogravimetry and mass spectrometry analysis. Chemical and Process Engineering, 29, 813–825. Search in Google Scholar
[22] Otero, M., Calvo, L. F., Gil, M. V., García, A. I., & Morán, A. (2008). Co-combustion of different sewage sludge and coal: A non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 99, 6311–6319. DOI: 10.1016/j.biortech.2007.12.011. http://dx.doi.org/10.1016/j.biortech.2007.12.01110.1016/j.biortech.2007.12.011Search in Google Scholar PubMed
[23] Otero, M., Gómez, X., García, A. I., & Morán, A. (2007). Effects of sewage sludge blending on the coal combustion: A thermogravimetric assessment. Chemosphere, 69, 1740–1750. DOI: 10.1016/j.chemosphere.2007.05.077. http://dx.doi.org/10.1016/j.chemosphere.2007.05.07710.1016/j.chemosphere.2007.05.077Search in Google Scholar PubMed
[24] Paik, P., & Kar, K. K. (2009). Thermal degradation kinetics and estimation of lifetime of polyethylene particles: Effects of particle size. Materials Chemistry and Physics, 113, 953–961. DOI: 10.1016/j.matchemphys.2008.08.075. http://dx.doi.org/10.1016/j.matchemphys.2008.08.07510.1016/j.matchemphys.2008.08.075Search in Google Scholar
[25] Quan, C., Li, A., & Gao, N. (2009). Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Management, 29, 2353–2360. DOI: 10.1016/j.wasman.2009.03.020. http://dx.doi.org/10.1016/j.wasman.2009.03.02010.1016/j.wasman.2009.03.020Search in Google Scholar
[26] Samtani, M., Dollimore, D., & Alexander, K. S. (2002). Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters. Thermochimica Acta, 392.393, 135–145. DOI: 10.1016/S0040-6031(02)00094-1. http://dx.doi.org/10.1016/S0040-6031(02)00094-110.1016/S0040-6031(02)00094-1Search in Google Scholar
[27] Scott, S. A., Dennis, J. S., Davidson, J. F., & Hayhurst, A. N. (2006). Thermogravimetric measurements of the kinetics of pyrolysis of dried sewage sludge. Fuel, 85, 1248–1253. DOI: 10.1016/j.fuel.2005.11.003. http://dx.doi.org/10.1016/j.fuel.2005.11.00310.1016/j.fuel.2005.11.003Search in Google Scholar
[28] Šimon, P. (2004). Isoconversional methods: Fundamentals, meaning and application. Journal of Thermal Analysis and Calorimetry, 76, 123–132. DOI: 10.1023/B:JTAN.0000027811.80036.6c. http://dx.doi.org/10.1023/B:JTAN.0000027811.80036.6c10.1023/B:JTAN.0000027811.80036.6cSearch in Google Scholar
[29] Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., & Rirksomboon, T. (2007). Describing sewage sludge pyrolysis kinetics by a combination of biomass fractions decomposition. Journal of Analytical and Applied Pyrolysis, 79, 78–85 DOI: 10.1016/j.jaap.2006.10.005. http://dx.doi.org/10.1016/j.jaap.2006.10.00510.1016/j.jaap.2006.10.005Search in Google Scholar
[30] Tsai, W.-T., Chang, J.-H., Hsien, K.-J., & Chang, Y.-M. (2009). Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor. Bioresource Technology, 100, 406–412. DOI: 10.1016/j.biortech.2008.06.013. http://dx.doi.org/10.1016/j.biortech.2008.06.01310.1016/j.biortech.2008.06.013Search in Google Scholar PubMed
[31] Wang, G., Li, W., Li, B., & Chen, H. (2008). TG study on pyrolysis of biomass and its three components under syngas. Fuel, 87, 552–558. DOI: 10.1016/j.fuel.2007.02.032. http://dx.doi.org/10.1016/j.fuel.2007.02.03210.1016/j.fuel.2007.02.032Search in Google Scholar
[32] Xiao, H.-M., Ma, X.-Q., & Lai, Z.-Y. (2009). Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Applied Energy, 86, 1741–1745. DOI: 10.1016/j.apenergy.2008.11.016. http://dx.doi.org/10.1016/j.apenergy.2008.11.01610.1016/j.apenergy.2008.11.016Search in Google Scholar
[33] Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781–1788. DOI: 10.1016/j.fuel.2006.12.013. http://dx.doi.org/10.1016/j.fuel.2006.12.01310.1016/j.fuel.2006.12.013Search in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
- Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
- New SPME fibre for analysis of mequinol emitted from DVDs
- Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
- Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
- Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
- Kinetic study of pyrolysis of waste water treatment plant sludge
- Transport phenomena in an agitated vessel with an eccentrically located impeller
- Membrane extraction of 1-phenylethanol from fermentation solution
- Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
- Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
- The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
- Effectiveness of nitric oxide ozonation
- Modelling of nanocrystalline iron nitriding process — influence of specific surface area
- Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
- Carnauba wax microparticles produced by melt dispersion technique
- Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
- Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
- Continuous dialysis of sulphuric acid in the presence of zinc sulphate
- Differences in affinity of arylstilbazolium derivatives to tetraplex structures
- Fast ferritin immunoassay on PDMS microchips
Articles in the same Issue
- Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi
- Predicting retention indices of aliphatic hydrocarbons on stationary phases modified with metallocyclams using quantitative structure-retention relationships
- New SPME fibre for analysis of mequinol emitted from DVDs
- Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation
- Enhancing the production of gamma-linolenic acid in Hansenula polymorpha by fed-batch fermentation using response surface methodology
- Process characteristics for a gas—liquid system agitated in a vessel equipped with a turbine impeller and tubular baffles
- Kinetic study of pyrolysis of waste water treatment plant sludge
- Transport phenomena in an agitated vessel with an eccentrically located impeller
- Membrane extraction of 1-phenylethanol from fermentation solution
- Theoretical study on transesterification in a combined process consisting of a reactive distillation column and a pervaporation unit
- Wall effects on terminal falling velocity of spherical particles moving in a Carreau model fluid
- The effect of the physical properties of the liquid phase on the gas-liquid mass transfer coefficient in two- and three-phase agitated systems
- Effectiveness of nitric oxide ozonation
- Modelling of nanocrystalline iron nitriding process — influence of specific surface area
- Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide
- Carnauba wax microparticles produced by melt dispersion technique
- Complexation studies of 3-substituted β-diketones with selected d- and f-metal ions
- Influence of the solvent donor number on the O/W partition ratio of Cu(II) complexes of 1,2-dialkylimidazoles
- Continuous dialysis of sulphuric acid in the presence of zinc sulphate
- Differences in affinity of arylstilbazolium derivatives to tetraplex structures
- Fast ferritin immunoassay on PDMS microchips