Abstract
Computational chemical methods have been used to correlate the molecular properties of the 10 ACE inhibitors (captopril, enalapril, perindopril, lisinopril, ramipril, trandolapril, quinapril, fosinopril, benazepril, and cilazapril) and some of their active metabolites (enalaprilat, perindoprilat, ramiprilat, trandolaprilat, quinaprilat, fosinoprilat, benazeprilat, and cilazaprilat). The computed pK a values correlate well with the available experimental values. In the dicarboxylic ACE inhibitors, the carboxyalkyl carboxylate group of the ACE inhibitors studied is more acidic than the C-terminal carboxylate. However, at physiological pH = 7.4 both carboxyl groups of ACE inhibitors are completely ionized and the dicarboxyl-containing ACE inhibitors behave as strong acids. The available experimental partition coefficients of these ACE inhibitors investigated are well reproduced by the neural network-based ALOGPs and the fragment-based KoWWiN methods. All parent drugs (and prodrugs), with the exception of fosinopril, are compounds with low lipophilicity. Calculated pK a, lipophilicity, solubility, absorption, and polar surface area of the most effective ACE inhibitors for the prevention of myocardial infarction, perindopril and ramipril, were found similar. Therefore, it is probable that the experimentally observed differences in the survival benefits in the first year after acute myocardial infarction in patients 65 years of age or older correlate closely to the physicochemical and pharmacokinetic characteristics of the specific ACE inhibitor that is used.
[1] Timmermans, P. B. M. W. M. and Smith, R. D., in Burger’s Medicinal Chemistry and Drug Discovery, 5th Edition, Vol. 2 Therapeutic Agents (Wolff, M., Editor), p. 265. Wiley, New York. 1996. Search in Google Scholar
[2] Opie, L. H., Angiotensin Converting Enzyme Inhibitors, 2nd Edition. Wiley—Liss, New York, 1994. Search in Google Scholar
[3] Wong, J., Patel, R. A., and Kowey, P. R., Prog. Cardiovasc. Dis. 47, 116 (2004). http://dx.doi.org/10.1016/j.pcad.2004.04.00310.1016/j.pcad.2004.04.003Search in Google Scholar
[4] Bertrand, M. E., Curr. Med. Res. Opin. 20, 1559 (2004). http://dx.doi.org/10.1185/030079904X418510.1185/030079904X4185Search in Google Scholar
[5] Okrucká, A., Pecháň, J., and Kratochvíl’ová, H., Platelets 9, 63 (1998). http://dx.doi.org/10.1080/0953710987702210.1080/09537109877022Search in Google Scholar
[6] Remková, A. and Kratochvíl’ová, H., Blood Coagul. Fibrinol. 11, 641 (2000). http://dx.doi.org/10.1097/00001721-200010000-0000810.1097/00001721-200010000-00008Search in Google Scholar
[7] Salvetti, A., Drugs 40, 800 (1990). 10.2165/00003495-199040060-00004Search in Google Scholar
[8] Furberg, C. D., Herrington, D. M., and Psaty, B. M., Lancet 354, 1202 (1999). http://dx.doi.org/10.1016/S0140-6736(99)03190-610.1016/S0140-6736(99)03190-6Search in Google Scholar
[9] Pilote, L., Abrahamowicz, M., Rodrigues, E., Eisenberg, M. J., and Rahme, E., Ann. Intern. Med. 141, 102 (2004). Search in Google Scholar
[10] Brown, N. J. and Vaughan, D. E., Circulation 97, 1411 (1998). 10.1161/01.CIR.97.14.1411Search in Google Scholar
[11] Spyroulias, G. A. and Cordopatis, P., Curr. Enzym. Inhibition 1, 29 (2005). http://dx.doi.org/10.2174/157340805295270210.2174/1573408052952702Search in Google Scholar
[12] http://ibmlc2.chem.uga.edu/sparc/index.cfm Search in Google Scholar
[13] Hilal, S. H., El-Shabrawy, Carreira, L. A., Karickhoff, S. W., Toubar, S. S., and Rizk, M., Talanta 43, 607 (1996). http://dx.doi.org/10.1016/0039-9140(95)01789-510.1016/0039-9140(95)01789-5Search in Google Scholar
[14] Hilal, S. H., Karickhoff, S. W., and Carreira, L. A., Quant. Struct.-Act. Relat. 14, 348 (1995). http://dx.doi.org/10.1002/qsar.1995014040510.1002/qsar.19950140405Search in Google Scholar
[15] Carreira, L.A., Hilal, S. H, and Karickhoff, S. W., in Theoretical and Computational Chemistry, Quantitative Treatment of Solute/Solvent Interactions, chapter 9 (Politzer, P. and Murray, J. S., Editors). Elsevier, Amsterdam, 1994. Search in Google Scholar
[16] Hilal, S. H., Karickhoff, S. W., and Carreira, L. A., QSAR Comb. Sci. 22, 565 (2003). http://dx.doi.org/10.1002/qsar.20033081210.1002/qsar.200330812Search in Google Scholar
[17] Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., Palyulin, V. A., Radchenko, E. V., Zefirov, N. S., Makarenko, A. S., Tanchuk, V. Y., and Prokopenko, V. V., J. Comput.-Aided Mol. Des. 19, 453 (2005). http://dx.doi.org/10.1007/s10822-005-8694-y10.1007/s10822-005-8694-ySearch in Google Scholar
[18] Tetko, I. V., Drug Discov. Today 10, 1497 (2005). http://dx.doi.org/10.1016/S1359-6446(05)03584-110.1016/S1359-6446(05)03584-1Search in Google Scholar
[19] Tetko, I. V., Bruneau, P., Mewes, H.-W., Rohrer, D. C., and Poda, G. I., Drug Discov. Today 11, 700 (2006). http://dx.doi.org/10.1016/j.drudis.2006.06.01310.1016/j.drudis.2006.06.013Search in Google Scholar
[20] Ertl, P. and Selzer, P., in Handbook of Chemoinformatics: From Data to Knowledge (Gasteiger, J., Editor), p. 1336. Wiley-VCH, Weinheim, 2003. Search in Google Scholar
[21] Smieško, M. and Remko, M., Chem. Pap. 58, 71 (2004). Search in Google Scholar
[22] Šramko, M., Remko, M., and Garaj, V., Struct. Chem. 16, 391 (2005). http://dx.doi.org/10.1007/s11224-005-6348-210.1007/s11224-005-6348-2Search in Google Scholar
[23] Andújar-Sánches, M., Cámara-Artigas, A., and Jara-Pérez, V., Biophys. Chem. 111, 183 (2004). http://dx.doi.org/10.1016/j.bpc.2004.05.01110.1016/j.bpc.2004.05.011Search in Google Scholar
[24] Hillaert, S. and Van den Bossche, W., J. Chromatogr., A 895, 33 (2000). http://dx.doi.org/10.1016/S0021-9673(00)00591-410.1016/S0021-9673(00)00591-4Search in Google Scholar
[25] Ozoemena, K. I., Raluca-Ioana, S., van Staden, J. F., and Aboul-Enein, Y. A., Sens. Actuators, B 105, 425 (2005). http://dx.doi.org/10.1016/j.snb.2004.06.03210.1016/j.snb.2004.06.032Search in Google Scholar
[26] Natesh, R., Schwager, S. L. U., Sturrock, E. D., and Acharya, K. R., Nature 421, 551 (2003). http://dx.doi.org/10.1038/nature0137010.1038/nature01370Search in Google Scholar PubMed
[27] Natesh, R., Schwager, S. L. U., Evans, H. R., Sturrock, E. D., and Acharya, K. R., Biochemistry 43, 8718 (2004). http://dx.doi.org/10.1021/bi049480n10.1021/bi049480nSearch in Google Scholar PubMed
[28] Ortiz-Salmerón, E., Barón, C., and García-Fuentes, L., FEBS Lett. 435, 219 (1998). http://dx.doi.org/10.1016/S0014-5793(98)01075-810.1016/S0014-5793(98)01075-8Search in Google Scholar
[29] Remko, M. and Garaj, V., Mol. Phys. 101, 2357 (2003). http://dx.doi.org/10.1080/002689703100071658310.1080/0026897031000716583Search in Google Scholar
[30] Yoshida, F. and Topliss, J. G., J. Med. Chem. 43, 2575 (2000). http://dx.doi.org/10.1021/jm000056410.1021/jm0000564Search in Google Scholar
[31] Abraham, M. H., Zhao, Y. H., Lee, J., Hersey, A., Luscombe, Ch. N., Reynolds, D. P., Beck, G., Sherborne, B., and Cooper, I., Eur. J. Med. Chem. 37, 595 (2002). http://dx.doi.org/10.1016/S0223-5234(02)01384-310.1016/S0223-5234(02)01384-3Search in Google Scholar
[32] Avdeef, A., Curr. Top. Med. Chem. 1, 277 (2001). http://dx.doi.org/10.2174/156802601339510010.2174/1568026013395100Search in Google Scholar PubMed
[33] Oprea, T. T., J. Comput.-Aided Mol. Des. 16, 325 (2002). http://dx.doi.org/10.1023/A:102087740275910.1023/A:1020877402759Search in Google Scholar
[34] Norinder, U. and Bergström, A. S., Chem. Med. Chem. 1, 920 (2006). Search in Google Scholar
[35] Tetko, I. V. and Tanchuk, V. Y., J. Chem. Inf. Comput. Sci. 42, 1136 (2002). http://dx.doi.org/10.1021/ci025515j10.1021/ci025515jSearch in Google Scholar PubMed
[36] Tetko, I. V., Tanchuk, V. Y., and Villa, A. E. P., J. Chem. Inf. Comput. Sci. 41, 1407 (2001). http://dx.doi.org/10.1021/ci010368v10.1021/ci010368vSearch in Google Scholar PubMed
[37] Tetko, I. V., Tanchuk, V. Y., Kasheva, T. N., and Villa, A. E. P., J. Chem. Inf. Comput. Sci. 41, 1488 (2001). http://dx.doi.org/10.1021/ci000392t10.1021/ci000392tSearch in Google Scholar PubMed
[38] Balakin, K. V., Savchuk, N. P., and Tetko, I. V., Curr. Med. Chem. 13, 223 (2006). http://dx.doi.org/10.2174/09298670677519791710.2174/092986706775197917Search in Google Scholar PubMed
[39] Meylan, W. M. and Howard, P. H., J. Pharm. Sci. 84, 83 (1995). http://dx.doi.org/10.1002/jps.260084012010.1002/jps.2600840120Search in Google Scholar
[40] http://www.syrres.com Search in Google Scholar
[41] Ondetti, M. A., Circulation 77(suppl I), 74 (1988). 10.1016/0024-3841(88)90053-8Search in Google Scholar
[42] Razzetti, R. and Acerbi, D., Am. J. Cardiol. 75, 7F (1995). http://dx.doi.org/10.1016/S0002-9149(99)80508-610.1016/S0002-9149(99)80508-6Search in Google Scholar
[43] VCCLAB, Virtual Computational Chemistry Laboratory, http://www.vcclab.org. Search in Google Scholar
[44] Raasch, W., Dendorfer, A., Ball, B., and Dominiak, P., Jpn. J. Pharmacol. 81, 346 (1999). http://dx.doi.org/10.1254/jjp.81.34610.1016/S0021-5198(19)30745-0Search in Google Scholar
[45] Lin, J. H. and Lu, A. Y. H., Pharmacol. Rev. 49, 403 (1997). Search in Google Scholar
[46] Higashimori, K., Gante, J., Holzemann, G., and Inagami, T., Hypertension 17, 270 (1991). 10.1161/01.HYP.17.3.270Search in Google Scholar
[47] Brown, B. and Hall, A. S., Am. J. Hypertens. 18, 127S (2005). http://dx.doi.org/10.1016/j.amjhyper.2005.06.00210.1016/j.amjhyper.2005.06.002Search in Google Scholar
[48] Sauer, W. H., Baer, J. T., Berlin, J. A., and Kimmel, S. E., Am. J. Cardiol. 94, 1171 (2004). http://dx.doi.org/10.1016/j.amjcard.2004.07.08710.1016/j.amjcard.2004.07.087Search in Google Scholar
[49] Tetko, I. V. and Poda, G. I., J. Med. Chem. 47, 5601 (2004). http://dx.doi.org/10.1021/jm049509l10.1021/jm049509lSearch in Google Scholar
[50] Lombardo, F., Shalaeva, M. Y., Bissett, B. D., and Chistokhodova, N., in LogP2004, The 3rd Lipophilicity Symposium, ETH: Zurich, Switzerland, 2004, p. L–22. Search in Google Scholar
[51] Hou, T. J., Zhang, W., Xia, K., Qiao, X. B., and Xu, X. J., J. Chem. Inf. Comput. Sci. 44, 1585 (2004). http://dx.doi.org/10.1021/ci049884m10.1021/ci049884mSearch in Google Scholar
[52] Raevsky, O. A., Fetisov, V. I., Trepalina, E. P., McFarland, J. W., and Schaper, K. J., Quant. Struct.-Act. Relat. 19, 366 (2000). http://dx.doi.org/10.1002/1521-3838(200010)19:4<366::AID-QSAR366>3.0.CO;2-E10.1002/1521-3838(200010)19:4<366::AID-QSAR366>3.0.CO;2-ESearch in Google Scholar
[53] Ranadive, S. A., Chen, A. X., and Serajuddin, A. T. M., Pharm. Res. 9, 1480 (1992). http://dx.doi.org/10.1023/A:101582331598310.1023/A:1015823315983Search in Google Scholar
[54] Taskinen, T. and Yliruusi, J., Adv. Drug Delivery Rev. 55, 1163 (2003). http://dx.doi.org/10.1016/S0169-409X(03)00117-010.1016/S0169-409X(03)00117-0Search in Google Scholar
[55] Remko, M. and von der Lieth, C.-W., Bioorg. Med. Chem. 12, 5395 (2004). http://dx.doi.org/10.1016/j.bmc.2004.07.04910.1016/j.bmc.2004.07.049Search in Google Scholar
[56] Remko, M., Swart, M., and Bickelhaupt, F. M., Bioorg. Med. Chem. 14, 1715 (2006). http://dx.doi.org/10.1016/j.bmc.2005.10.02010.1016/j.bmc.2005.10.020Search in Google Scholar
[57] Zhao, Y. H., Abraham, M. H., Lee, J., Hersey, A., Luscombe, C. N., Beck, G., Sherborne, B., and Cooper, I., Pharm. Res. 19, 1446 (2002). http://dx.doi.org/10.1023/A:102044433001110.1023/A:1020444330011Search in Google Scholar
[58] Kelly, J. G. and O’Malley, K., Clin. Pharmacokinet. 19, 177 (1990). http://dx.doi.org/10.2165/00003088-199019030-0000310.2165/00003088-199019030-00003Search in Google Scholar
[59] Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., and Kapple, K. D., J. Med. Chem. 45, 2615 (2002). http://dx.doi.org/10.1021/jm020017n10.1021/jm020017nSearch in Google Scholar
[60] Refsgaard, H. H. F., Jensen, B. F., Brockhoff, P. B., Padkjær, S. B., Guldbrandt, M., and Christensen, M. S., J. Med. Chem. 48, 805 (2005). http://dx.doi.org/10.1021/jm049661n10.1021/jm049661nSearch in Google Scholar
[61] Muegge, I., Med. Res. Rev. 23, 302 (2003). http://dx.doi.org/10.1002/med.1004110.1002/med.10041Search in Google Scholar
[62] Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J., Adv. Drug Delivery Rev. 23, 3 (1997). http://dx.doi.org/10.1016/S0169-409X(96)00423-110.1016/S0169-409X(96)00423-1Search in Google Scholar
[63] Ertl, P., Rohde, B., and Selzer, P., J. Med. Chem. 43, 3714 (2000). http://dx.doi.org/10.1021/jm000942e10.1021/jm000942eSearch in Google Scholar
[64] http://www.molinspiration.com Search in Google Scholar
[65] Tzakos, A. G., Naqvi, N., Comporozos, K., Pierattelli, R., Theodorou, V., Husain, A., and Gerothanassis, I. P., Bioorg. Med. Chem. Lett. 16, 5084 (2006). http://dx.doi.org/10.1016/j.bmcl.2006.07.03410.1016/j.bmcl.2006.07.034Search in Google Scholar
[66] Pascard, C., Guilhem, J., Vincent, M., Rémond, G., Portevin, B., and Laubie, M., J. Med. Chem. 34, 663 (1991). http://dx.doi.org/10.1021/jm00106a03010.1021/jm00106a030Search in Google Scholar
[67] Clark, D. E., J. Pharm. Sci. 88, 815 (1999). http://dx.doi.org/10.1021/js980402t10.1021/js980402tSearch in Google Scholar
[68] Walter, E., Kissel, T., and Amidon, G. L., Adv. Drug Delivery Rev. 20, 33 (1996). http://dx.doi.org/10.1016/0169-409X(95)00129-U10.1016/0169-409X(95)00129-USearch in Google Scholar
[69] Moore, V. A., Irwin, W. J., Timmins, P., Lambert, P. A., Chong, S., Dando, S. A., and Morrison, R. A., Int. J. Pharm. 210, 29 (2000). http://dx.doi.org/10.1016/S0378-5173(00)00564-010.1016/S0378-5173(00)00564-0Search in Google Scholar
© 2007 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Spectrophotometric determination of microamounts of quercetin based on its complexation with copper(II)
- Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution
- The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics
- Fluidization behavior of oil-contaminated sand
- Software sensors for monitoring of a solid waste composting process
- Calcined Ni—Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity
- Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures
- Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
- Topochemical models for anti-HIV activity of 1-alkoxy-5-alkyl-6-(arylthio)uracils
- Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors
- Silver as anode in cryolite—alumina-based melts
- Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides
- Z. Platková, M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová: Selection of Carrier for Immobilization of Fructosyltransferase from Aureobasidium pullulans
Articles in the same Issue
- Spectrophotometric determination of microamounts of quercetin based on its complexation with copper(II)
- Oxygen evolution on Ti/Co3O4-coated electrodes in alkaline solution
- The zeta potential of kaolin suspensions measured by electrophoresis and electroacoustics
- Fluidization behavior of oil-contaminated sand
- Software sensors for monitoring of a solid waste composting process
- Calcined Ni—Al layered double hydroxide as a catalyst for total oxidation of volatile organic compounds: Effect of precursor crystallinity
- Thermodynamic possibilities and constraints of pure hydrogen production by a chromium, nickel, and manganese-based chemical looping process at lower temperatures
- Death kinetics of Escherichia coli in goat milk and Bacillus licheniformis in cloudberry jam treated by ohmic heating
- Topochemical models for anti-HIV activity of 1-alkoxy-5-alkyl-6-(arylthio)uracils
- Acidity, lipophilicity, solubility, absorption, and polar surface area of some ACE inhibitors
- Silver as anode in cryolite—alumina-based melts
- Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides
- Z. Platková, M. Polakovič, V. Štefuca, M. Vandáková, and M. Antošová: Selection of Carrier for Immobilization of Fructosyltransferase from Aureobasidium pullulans