Operability Analysis of MTBE Reactive Distillation Column using a Process Simulator
-
Herry Santoso
, Jie Bao and Peter L Lee
It has been understood for decades that process operability does not depend entirely upon the control system but also on the inherent properties of the process itself. For example, the decision on the size of equipment or the use of a highly integrated process may have a significant impact on the overall operability. Ignoring operability during process design may lead to a very difficult to control process. In this paper, a dynamic operability analysis of a Methyl Tertiary Butyl Ether (MTBE) reactive distillation column is presented. The effects of two design parameters, i.e. the reboiler duty and the reflux ratio, on the operability of the reactive distillation system are studied. Process operability is defined as the ability of the process to return to the steady-state in spite of unknown but bounded disturbances. The nonlinearity of the process is represented using a Hammerstein model, which can be easily obtained during process design from the steady-state model combined with some limited information on the process dynamics. The recent operability analysis method proposed by Rojas et al. (2007) is extended such that it can be implemented conveniently as one extra step after the flowsheet simulation using a process simulator. Based on this approach, an optimal controller for this highly nonlinear process is determined by solving a linear matrix inequality (LMI) optimization problem.
©2011 Walter de Gruyter GmbH & Co. KG, Berlin/Boston
Articles in the same Issue
- Article
- Editorial: Special Issue Contributed from CHEMECA 2008-Mathematical Modeling
- Advanced Modelling for Investigating the Effects of Reactor Operation on Controlled Living Emulsion Polymerization
- Influence of Jet Velocity on Jet Breakup in Immiscible Liquid-Liquid Systems
- Computational Fluid Dynamics Study of New Vacuum Degassing Process
- Kinetic Simulation of Methacrolein and Lactone Production from the Catalytic Oxidation of Isobutane over Lanthanide Phosphomolybdates
- Operability Analysis of MTBE Reactive Distillation Column using a Process Simulator
- MIQP-Based MPC in the Presence of Control Valve Stiction
- A Theoretical Investigation into Phase Change Clothing Benefits for Firefighters under Extreme Conditions
- Travelling Waves in a Two-Step Chain Branching Model with Heat Loss
- Three-Dimensional Numerical Study on Flames
- 2D Computer Simulations of Ohmic Heating of Milk Solutions in Laminar Annular Flow
- Inhibition of Premixed Methane-Air Flames with CF3I
- Adaptive Supervisory Control of an Industrial Steel Slab Reheating Furnace
- Analysis of an Immoblised Enzyme Reactor with Catalysts Activation
Articles in the same Issue
- Article
- Editorial: Special Issue Contributed from CHEMECA 2008-Mathematical Modeling
- Advanced Modelling for Investigating the Effects of Reactor Operation on Controlled Living Emulsion Polymerization
- Influence of Jet Velocity on Jet Breakup in Immiscible Liquid-Liquid Systems
- Computational Fluid Dynamics Study of New Vacuum Degassing Process
- Kinetic Simulation of Methacrolein and Lactone Production from the Catalytic Oxidation of Isobutane over Lanthanide Phosphomolybdates
- Operability Analysis of MTBE Reactive Distillation Column using a Process Simulator
- MIQP-Based MPC in the Presence of Control Valve Stiction
- A Theoretical Investigation into Phase Change Clothing Benefits for Firefighters under Extreme Conditions
- Travelling Waves in a Two-Step Chain Branching Model with Heat Loss
- Three-Dimensional Numerical Study on Flames
- 2D Computer Simulations of Ohmic Heating of Milk Solutions in Laminar Annular Flow
- Inhibition of Premixed Methane-Air Flames with CF3I
- Adaptive Supervisory Control of an Industrial Steel Slab Reheating Furnace
- Analysis of an Immoblised Enzyme Reactor with Catalysts Activation