Home Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique
Article
Licensed
Unlicensed Requires Authentication

Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique

  • Alexandre Mikowski , Paulo Soares , Fernando Wypych and Carlos M. Lepienski EMAIL logo
Published/Copyright: April 1, 2015
Become an author with De Gruyter Brill

Abstract

Macroscopically bladed kyanite crystals of blue and glassy luster were cleaved along two planes, and the mechanical properties were measured through depth-sensing indentation (DSI). The conventional method to determine fracture toughness (KIC) from indentation is based on radial crack lengths measurements, which is difficult to estimate owing to the ease with which kyanite cleaves. An alternative method is proposed to determine the KIC for the perfect cleavage plane (100) of kyanite based on the estimation of the crack nucleation threshold load from a discontinuity or “pop-in” in the DSI load-unload curve. The toughness value for kyanite in the plane of perfect cleavage (100) determined by the proposed method is KIC =2.1 MPa·m1/2. The hardness of 10.7 ± 1.6 GPa for the perfect cleavage plane is lower than the one measured in a plane (010), 18.0 ± 2.9 GPa. The measured elastic modulus for the perfect cleavage plane (100) and for the plane (010) are 297 ± 11 and 405 ± 31 GPa, respectively. These values are in agreement with the published mechanical properties of kyanite, obtained by other techniques. The mechanical behavior is discussed and correlated to fracture patterns during indentation for both crystallographic directions of this mineral.

Received: 2007-5-14
Accepted: 2007-11-30
Published Online: 2015-4-1
Published in Print: 2008-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. The crystal structure of vurroite, Pb20Sn2(Bi,As)22S54Cl6: OD-character, polytypism, twinning, and modular description
  2. Mineralogy of the Paso Robles soils on Mars
  3. Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe Mine, China: Both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup
  4. Thermal equation of state of CaGeO3 perovskite
  5. Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development
  6. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra
  7. Oxide-melt solution calorimetry of selenides: Enthalpy of formation of zinc, cadmium, and lead selenide
  8. Precise dating of biotite in distal volcanic ash: Isolating subtle alteration using 40Ar/39Ar laser incremental heating and electron microprobe techniques
  9. Rationale for the existence of four- and eight-reversals in antigorite
  10. Structural relaxation around substitutional Cr3+ in pyrope garnet
  11. Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry
  12. Interlayer potassium and its neighboring atoms in micas: Crystal-chemical modeling and XANES spectroscopy
  13. Effect of chemical environment on the hydrogen-related defect chemistry in wadsleyite
  14. Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique
  15. Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy
  16. A new experimental thin film approach to study mobility and partitioning of elements in grain boundaries: Fe-Mg exchange between olivines mediated by transport through an inert grain boundary
  17. Titanium as a cathodoluminescence activator in alkali feldspars
  18. Biogenic vs. abiogenic magnetite nanoparticles: A XMCD study
  19. Solubility of andradite, Ca3Fe2Si3O12, in a 10 mol% NaCl solution at 800 °C and 10 kbar: Implications for the metasomatic origin of grandite garnet in calc-silicate granulites
  20. A 3D reconstruction of plagioclase crystals in a synthetic basalt
  21. Rudashevskyite, the Fe-dominant analogue of sphalerite, a new mineral: Description and crystal structure
  22. Birchite, a new mineral from Broken Hill, New South Wales, Australia: Description and structure refinement
  23. Crystal structure of synthetic Al4B2O9: A member of the mullite family closely related to boralsilite
  24. Interaction of gypsum with As(V)-bearing aqueous solutions: Surface precipitation of guerinite, sainfeldite, and Ca2NaH(AsO4)2·6H2O, a synthetic arsenate
  25. Jahnsite-(NaFeMg), a new mineral from the Tip Top mine, Custer County, South Dakota: Description and crystal structure
  26. Evidence for anomalously large degree of polymerization in Mg2SiO4 glass and melt
  27. Theoretical infrared absorption coefficient of OH groups in minerals
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2008.2694/html
Scroll to top button