Home Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy
Article
Licensed
Unlicensed Requires Authentication

Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy

  • Laurel C. Basciano EMAIL logo and Ronald C. Peterson
Published/Copyright: April 1, 2015
Become an author with De Gruyter Brill

Abstract

Members of the natrojarosite-hydronium jarosite [(Na,H3O)Fe3(SO4)2(OH)6] and jarosite-natrojarosite [(K,Na)Fe3(SO4)2(OH)6] solid-solution series were synthesized and investigated by Rietveld analysis of X-ray powder diffraction data. The synthesized samples have full Fe occupancy, where in many previous studies there were significant vacancies in the B site. Well-defined trends can be seen in the unit-cell parameters across the solid-solution series in the synthetic samples. The majority of the samples in this study were directly synthesized under hydrothermal conditions at 140 °C. End-member natrojarosite was synthesized using a two-step method, where the initial sample was heated in a 1.0 m H2SO4-0.5Na2SO4 solution at 200 °C for 3 days, yielding a sample with 100% Na occupancy. Many of the samples were initially zoned and required grinding and re-heating in the reactant solution for homogenization. Substitution of H3O and K into natrojarosite changes unit-cell parameters in a linear fashion. The unit-cell parameters presented here are significantly different than the majority of previous studies on synthetic samples, as samples in the current study have full Fe occupancy and the Na-K jarosite series has no H3O substitution in the A site. Substitution in the A site mainly affects unit-cell parameter c with little change in a. As Na occupancy increases there is a decrease in A-O2 and A-O3 distances and a consequent increase in Fe-O2 and Fe-O3 distance leading to an overall decrease in unit-cell parameter c in both the Na-H3O and Na-K jarosite series. The synthetic samples are compared to natural samples from mine waste deposits in Rio Tinto (Huelva, Spain), Ely Mine (Vermont), and a mineral collecting locality near Sharbot Lake (Ontario), as well as natural and synthetic samples documented in the literature. Based on unit-cell parameters many of the natural samples appear to have full Fe occupancy and correlate well with the synthetic samples from this study. The infrared spectra of the samples were analyzed, and there is a gradual change in the spectral features across the solid-solution series between end-members. The results from this study will aid in the interpretation of the possible chemical compositions of natural jarosite group minerals in mine waste and on Mars.

Received: 2007-7-4
Accepted: 2007-12-19
Published Online: 2015-4-1
Published in Print: 2008-5-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. The crystal structure of vurroite, Pb20Sn2(Bi,As)22S54Cl6: OD-character, polytypism, twinning, and modular description
  2. Mineralogy of the Paso Robles soils on Mars
  3. Dingdaohengite-(Ce) from the Bayan Obo REE-Nb-Fe Mine, China: Both a true polymorph of perrierite-(Ce) and a titanic analog at the C1 site of chevkinite subgroup
  4. Thermal equation of state of CaGeO3 perovskite
  5. Quantitative absorbance spectroscopy with unpolarized light: Part I. Physical and mathematical development
  6. Quantitative absorbance spectroscopy with unpolarized light: Part II. Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra
  7. Oxide-melt solution calorimetry of selenides: Enthalpy of formation of zinc, cadmium, and lead selenide
  8. Precise dating of biotite in distal volcanic ash: Isolating subtle alteration using 40Ar/39Ar laser incremental heating and electron microprobe techniques
  9. Rationale for the existence of four- and eight-reversals in antigorite
  10. Structural relaxation around substitutional Cr3+ in pyrope garnet
  11. Metasomatic thorite and uraninite inclusions in xenotime and monazite from granitic pegmatites, Hidra anorthosite massif, southwestern Norway: Mechanics and fluid chemistry
  12. Interlayer potassium and its neighboring atoms in micas: Crystal-chemical modeling and XANES spectroscopy
  13. Effect of chemical environment on the hydrogen-related defect chemistry in wadsleyite
  14. Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique
  15. Crystal chemistry of the natrojarosite-jarosite and natrojarosite-hydronium jarosite solid-solution series: A synthetic study with full Fe site occupancy
  16. A new experimental thin film approach to study mobility and partitioning of elements in grain boundaries: Fe-Mg exchange between olivines mediated by transport through an inert grain boundary
  17. Titanium as a cathodoluminescence activator in alkali feldspars
  18. Biogenic vs. abiogenic magnetite nanoparticles: A XMCD study
  19. Solubility of andradite, Ca3Fe2Si3O12, in a 10 mol% NaCl solution at 800 °C and 10 kbar: Implications for the metasomatic origin of grandite garnet in calc-silicate granulites
  20. A 3D reconstruction of plagioclase crystals in a synthetic basalt
  21. Rudashevskyite, the Fe-dominant analogue of sphalerite, a new mineral: Description and crystal structure
  22. Birchite, a new mineral from Broken Hill, New South Wales, Australia: Description and structure refinement
  23. Crystal structure of synthetic Al4B2O9: A member of the mullite family closely related to boralsilite
  24. Interaction of gypsum with As(V)-bearing aqueous solutions: Surface precipitation of guerinite, sainfeldite, and Ca2NaH(AsO4)2·6H2O, a synthetic arsenate
  25. Jahnsite-(NaFeMg), a new mineral from the Tip Top mine, Custer County, South Dakota: Description and crystal structure
  26. Evidence for anomalously large degree of polymerization in Mg2SiO4 glass and melt
  27. Theoretical infrared absorption coefficient of OH groups in minerals
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2008.2731/html
Scroll to top button