Home Celleriite, □(Mn22+Al)Al6(Si6O18)(BO3)3(OH)3(OH), , a new mineral species of the tourmaline supergroup
Article
Licensed
Unlicensed Requires Authentication

Celleriite, (Mn22+Al)Al6(Si6O18)(BO3)3(OH)3(OH), , a new mineral species of the tourmaline supergroup

  • Ferdinando Bosi , Federico Pezzotta , Alessandra Altieri , Giovanni B. Andreozzi , Paolo Ballirano ORCID logo , Gioacchino Tempesta , Jan Cempírek ORCID logo , Radek Škoda , Jan Filip , Renata Čopjaková , Milan Novák , Anthony R. Kampf ORCID logo , Emily D. Scribner , Lee A. Groat and R. James Evans
Published/Copyright: December 28, 2021
Become an author with De Gruyter Brill

Abstract

Celleriite, (Mn22+Al)Al6(Si6O18)(BO3)3(OH)3(OH), is a new mineral of the tourmaline supergroup. It was discovered in the Rosina pegmatite, San Piero in Campo, Elba Island, Italy (holotype specimen), and in the Pikárec pegmatite, western Moravia, Czech Republic (co-type specimen). Celleriite in hand specimen is violet to gray-blue (holotype) and dark brownish-green (co-type) with a vitreous luster, conchoidal fracture, and white streak. Celleriite has a Mohs hardness of ~7 and a calculated density of 3.13 and 3.14 g/cm3 for holotype and its co-type, respectively. In plane-polarized light in thin section, celleriite is pleochroic (O = pale violet and E = light gray-blue in holotype; O = pale green and E = colorless in co-type) and uniaxial negative. Celleriite has trigonal symmetry: space group R3m, Z = 3, a = 15.9518(4) and 15.9332(3) Å, c = 7.1579(2) and 7.13086(15) Å, V = 1577.38(9) and 1567.76(6) Å3 for holotype and co-type, respectively (data from single-crystal X‑ray diffraction). The crystal structure of the holotype specimen was refined to R1 = 2.89% using 1696 unique reflections collected with MoKα X‑ray intensity data. Structural, chemical, and spectroscopic analyses resulted in the formulas: x(0.58Na0.42)1.00Y(Mn1.392+Fe0.162+Mg0.01Al1.14Fe0.013.0Li0.28T0.01)Σ3.00ZAl6[ T(Si5.99Al0.01)Σ6.00O18 ](BO3)3(OH)3w[ (OH)0.65F0.03O0.32 ]Σ1.00(forholotype) and X(0.51Na0.49)Σ1.00Y(Mn0.902+Fe0502+Al1.36Fe0043+Li0.17Zn0.04)Σ3.00ZAl6[ T(Si5.75B0.25)Σ6.00O18 ](BO3)3(OH)3w[ (OH)0.35F0.17O0.48 ]1.00(forco-type)

Celleriite is a hydroxy species belonging to the X-site vacant group of the tourmaline supergroup. The new mineral was approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association, proposal no. 2019-089.

In the Rosina pegmatite, celleriite formed an overgrowth at the analogous pole of elbaite–fluorelbaite–rossmanite crystals during the latest stage of evolution of pegmatite cavities after an event of a pocket rupture. In the Pikárec pegmatite, celleriite occurs as an intermediate growth sector of elbaite, princivalleite, and fluor-elbaite.


|| Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html


Funding statement: Funding by Sapienza University of Rome (Prog. Università 2018 to F. Bosi) and Deep Carbon Observatory (2016 to G.B. Andreozzi) are gratefully acknowledged. J.C., R.Š., R.Č., and M.N. acknowledge support from the project GAČR 17-17276S. The research was supported by an NSERC Discovery Grant to L.A.G. (funding reference 06434). Support from the John Jago Trelawney Endowment to the Mineral Sciences Department of the Natural History Museum of Los Angeles County to A.R.K. is acknowledged. Part of the data presented in this paper were obtained at CEITEC, Core Facility X‑ray Diffraction, and Bio-SAXS supported by MEYS CR (LM2018127).

Acknowledgments

Chemical analyses were completed with the kind assistance of M. Serracino, to whom the authors express their gratitude. The associate editor, E.S. Grew, the Technical Editor, and the reviewers, P. Bačík and D.J. Henry, are thanked for their constructive comments.

References cited

Ahmadi, S., Tahmasbi, Z., Khalaji, A.A., and Zal, F. (2019) Chemical variations and origin of tourmalines in laleh zar granite of Kerman (Southeast Iran). Periodico di Mineralogia, 88, 117–129.Search in Google Scholar

Altieri, A. (2019) Evoluzione cristallochimica di tormaline delle pegmatiti a gemme dell’Isola d’Elba. Master thesis, Sapienza University of Rome, 129 p. (in Italian).Search in Google Scholar

Andreozzi, G.B., Bosi, F., and Longo, M. (2008) Linking Mössbauer and structural parameters in elbaite-schorl-dravite tourmalines. American Mineralogist, 93, 658–666.10.2138/am.2008.2721Search in Google Scholar

Andreozzi, G.B., Bosi, F., Celata, B., Capizzi, L.S., Stagno, V., and Beckett-Brown, C. (2020) Crystal-chemical behavior of Fe2+ in tourmaline dictated by structural stability: insights from a schorl with formula NaY(Fe22+Al)Z(Al5Fe2+)(Si6O18) (BO3)3(OH)3(OH,F) from Seagull batholith (Yukon Territory, Canada). Physics and Chemistry of Minerals, 47, 25.10.1007/s00269-020-01094-7Search in Google Scholar

Barboni, M., Annen, C., and Schoene, B. (2015) Evaluating the construction and the evolution of upper crustal magma reservoirs with coupled U/Pb zircon geochronology and thermal modeling: A case study from the Mt. Capanne pluton (Elba, Italy). Earth and Planetary Science Letters, 432, 436–448.10.1016/j.epsl.2015.09.043Search in Google Scholar

Bosi, F. (2013) Bond-valence constraints around the O1 site of tourmaline. Mineralogical Magazine, 77, 343–351.10.1180/minmag.2013.077.3.08Search in Google Scholar

Bosi, F. (2014) Bond valence at mixed occupancy sites. I. Regular polyhedra. Acta Crystallographica, B70, 864–870.Search in Google Scholar

Bosi, F. (2018) Tourmaline crystal chemistry. American Mineralogist, 103, 298–306.10.2138/am-2018-6289Search in Google Scholar

Bosi, F., and Andreozzi, G.B. (2013) A critical comment on Ertl et al. (2012): “Limitations of Fe2+ and Mn2+ site occupancy in tourmaline: Evidence from Fe2+- and Mn2+-rich tourmaline. American Mineralogist, 98, 2183–2192.10.2138/am.2013.4534Search in Google Scholar

Bosi, F., and Lucchesi, S. (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. American Mineralogist, 92, 1054–1063.10.2138/am.2007.2370Search in Google Scholar

Bosi, F., Agrosì, G., Lucchesi, S., Melchiorre, G., and Scandale, E. (2005) Mn-tourmaline from island of Elba (Italy). Crystal chemistry. American Mineralogist, 90, 1661–1668.10.2138/am.2005.1852Search in Google Scholar

Bosi, F., Skogby, H., Agrosì, G., and Scandale, E. (2012) Tsilaisite, NaMn3Al6 (Si6O18)(BO3)3(OH)3OH, a new mineral species of the tourmaline supergroup from Grotta d’Oggi, San Pietro in Campo, island of Elba, Italy. American Mineralogist, 97, 989–994.10.2138/am.2012.4019Search in Google Scholar

Bosi, F., Andreozzi, G.B., Agrosì, G., and Scandale, E. (2015) Fluor-tsilaisite, NaMn3Al6(Si6O18)(BO3)3(OH)3F, a new tourmaline from San Piero in Campo (Elba, Italy) and new data on tsilaisitic tourmaline from the holotype specimen locality. Mineralogical Magazine, 79, 89–101.10.1180/minmag.2015.079.1.08Search in Google Scholar

Bosi, F., Reznitskii, L., Hålenius, U., and Skogby, H. (2017) Crystal chemistry of Al–V–Cr oxy-tourmalines from Sludyanka complex, Lake Baikal, Russia. European Journal of Mineralogy, 29, 457–472.10.1127/ejm/2017/0029-2617Search in Google Scholar

Bosi, F., Naitza, S., Skogby, H., Secchi, F., Conte, A.M., Cuccuru, S., Hålenius, U., De La Rosa, N., Kristiansson, P., Charlotta Nilsson, E.J., Ros, L., and Andreozzi, G.B. (2018) Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy): Crystal-chemical study and petrological constraints. Lithos, 308-309, 395–411.10.1016/j.lithos.2018.02.013Search in Google Scholar

Bosi, F., Hatert, F., Hålenius, U., Pasero, M., Miyawaki, R., and Mills, S.J. (2019a) On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions. Mineralogical Magazine, 83, 627–632.10.1180/mgm.2019.55Search in Google Scholar

Bosi, F., Biagioni, C., and Oberti, R. (2019b) On the chemical identification and classification of minerals. Minerals, 9, 591.10.3390/min9100591Search in Google Scholar

Bosi, F., Naitza, S., Secchi, F., Conte, A.M., Cuccuru, S., Andreozzi, G.B., Skogby, H., and Hålenius, U. (2019c) Petrogenetic controls on the origin of tourmalinite veins from Mandrolisai igneous massif (Central Sardinia, Italy): Insights from tourmaline crystal chemistry. Lithos, 342-343, 333–344.10.1016/j.lithos.2019.05.042Search in Google Scholar

Bosi, F., Skogby, H., and Hålenius, U. (2019d) Thermally induced cation redistribution in fluor-elbaite and Fe-bearing tourmalines. Physics and Chemistry of Minerals, 46, 371–383.10.1007/s00269-018-1009-3Search in Google Scholar

Bosi, F., Pezzotta, F., Altieri, A., Andreozzi, G.B., Ballirano, P., and Tempesta, G. (2020a) Celleriite, IMA 2019-089. CNMNC Newsletter. February 2020, Page 211. European Journal of Mineralogy, 32, 209–213.Search in Google Scholar

Bosi, F., Pezzotta, F., Skobgy, H., Altieri, A., Hålenius, U., Tempesta, G., and Cempírek, J. (2020b) Princivalleite, IMA 2020-056. CNMNC Newsletter No. 58, December 2020. European Journal of Mineralogy, 32, https://doi.org/10.5194/ejm-32-645-2020.10.5194/ejm-32-645-2020.Search in Google Scholar

Brese, N.E., and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.10.1107/S0108768190011041Search in Google Scholar

Cempírek, J., Houzar, S., Novák, M., Groat, L.A., Selway, J.B., and Šrein, V. (2013) Crystal structure and compositional evolution of vanadium-rich oxy-dravite from graphite quartzite at Bítovánky, Czech Republic. Journal of Geosciences, 58, 149–162.10.3190/jgeosci.139Search in Google Scholar

Černý, P., London, D., and Novák, M. (2012) Granitic pegmatites as reflection of their sources. Elements, 8, 289–294.10.2113/gselements.8.4.289Search in Google Scholar

Čopjaková, R., Škoda, R., Vašinová-Galiová, M., Novák, M., and Cempírek, J. (2015) Sc- and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group mineral from the mixed (NYF+LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic). American Mineralogist, 100, 1434–1451.10.2138/am-2015-4863Search in Google Scholar

Dixon, A., Cempírek, J., and Groat, L.A. (2014) Mineralogy and geochemistry of pegmatites on Mount Begbie, British Columbia. Canadian Mineralogist, 52, 129–164.10.3749/canmin.52.2.129Search in Google Scholar

Dutrow, B.L., and Henry, D.J. (2000) Complexly zoned fibrous tourmaline, Cruzeiro mine, Minas Gerais, Brazil: A record of evolving magmatic and hydrothermal fluids. Canadian Mineralogist, 38, 131–143.10.2113/gscanmin.38.1.131Search in Google Scholar

Dutrow, B.L., and Henry, D.J. (2018) Tourmaline compositions and textures: reflections of the fluid phase. Journal of Geosciences, 63, 99–110.10.3190/jgeosci.256Search in Google Scholar

Ertl, A., Hughes, J.M., Pertlik, F., Foit, F.F. Jr., Wright, S.E., Brandstatter, F., and Marler, B. (2002) Polyhedron distortions in tourmaline. Canadian Mineralogist, 40, 153–162.10.2113/gscanmin.40.1.153Search in Google Scholar

Ertl, A., Henry, D.J., and Tillmanns, E. (2018) Tetrahedral substitutions in tourmaline: a review. European Journal of Mineralogy, 30, 465–470.10.1127/ejm/2018/0030-2732Search in Google Scholar

Filip, J., Bosi, F., Novák, M., Skogby, H., Tuček, J., Čuda, J., and Wildner, M. (2012) Redox processes of iron in the tourmaline structure: Example of the high-temperature treatment of Fe3+-rich schorl. Geochimica et Cosmochimica Acta, 86, 239–256.10.1016/j.gca.2012.02.031Search in Google Scholar

Flégr, T. (2016) Vývoj chemického složení turmalínů z elbaitového pegmatitu Řečice. M.S. thesis, Faculty of Science, Masaryk University, Brno (in Czech).Search in Google Scholar

Foit, F.F. Jr. (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. American Mineralogist, 74, 422–431.Search in Google Scholar

Gadas, P., Novak, M., Stanek, J., Filip, J., and Galiova, M.V. (2012) Compositional evolution of zoned tourmaline crystals from pockets in common pegmatites, the Moldanubian Zone, Czech Republic. Canadian Mineralogist, 50, 895–912.10.3749/canmin.50.4.895Search in Google Scholar

Gagné, O.C., and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica Section B, Structural Science, Crystal Engineering and Materials, B 71, 562–578.10.1107/S2052520615016297Search in Google Scholar PubMed PubMed Central

Galliski, M.A., Marquez-Zavalia, M.F., Lira, R., Cempirek, J., and Skoda, R. (2012) Mineralogy and origin of the dumortierite-bearing pegmatites of Virorco, San Luis, Argentina. Canadian Mineralogist, 50, 873–894.10.3749/canmin.50.4.873Search in Google Scholar

Grew, E.S., Bosi, F., Ros, L., Kristiansson, P., Gunter, M.E., Hålenius, U., Trumbull, R.B., and Yates, M.G. (2018) Fluor-elbaite, lepidolite and Ta-Nb oxides from a pegmatite of the 3000 MA Sinceni pluton, Swaziland: Evidence for lithium-cesium-tantalum (LCT) pegmatites in the Mesoarchean. European Journal of Mineralogy, 30, 205–218.10.1127/ejm/2017/0029-2686Search in Google Scholar

Grew, E.S., Krivovichev, S.V., Hazen, R.M., and Hystad, G. (2016) Evolution of structural complexity in boron minerals. Canadian Mineralogist, 54, 125–143.10.3749/canmin.1500072Search in Google Scholar

Grice, J.D., and Ercit, T.S. (1993) Ordering of Fe and Mg in the tourmaline crystal structure: The correct formula. Neues Jahrbuch für Mineralogie Abhandlungen, 165, 245–266.Search in Google Scholar

Haralampiev, A.G., and Grover, J. (1993) Synthesis experiments in the binary system tsilaisite–dravite, Na(MnxMg1–x)3Al6(BO3)3Si6O18(OH)4, at T = 375–700° and P = 2000 bars; does garnet control the occurrence of tourmaline? Geological Society of America Abstracts with Program, 25, 94–55.Search in Google Scholar

Hawthorne, F.C., Selway, J.B., Kato, A., Matsubara, S., Shimizu, M., Grice, J.D., and Vajdak, J. (1999) Magnesiofoitite, ◻(Mg2Al)Al6(Si6O18)(BO3)3(OH)4, a new alkali-deficient tourmaline. Canadian Mineralogist, 37, 1439–1443.Search in Google Scholar

Hazen, R.M., and Ausubel, J.H. (2016) On the nature and significance of rarity in mineralogy. American Mineralogist, 101, 1245–1251.10.2138/am-2016-5601CCBYSearch in Google Scholar

Henry, D.J., and Dutrow, B.L. (1996) Metamorphic tourmaline and its petrologic applications. In E.S. Grew and L.M. Anvitz, Eds., Boron: Mineralogy, petrology and geochemistry, 33. 503–557. Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501509223-012Search in Google Scholar

Henry, D.J., and Dutrow, B.L. (2011) The incorporation of fluorine in tourmaline: Internal crystallographic controls or external environmental influences? Canadian Mineralogist, 49, 41–56.10.3749/canmin.49.1.41Search in Google Scholar

Henry, D.J., Novák, M., Hawthorne, F.C., Ertl, A., Dutrow, B., Uher, P., and Pezzotta, F. (2011) Nomenclature of the tourmaline-supergroup minerals. American Mineralogist, 96, 895–913.10.2138/am.2011.3636Search in Google Scholar

Jolliff, B.L., Papike, J.J., and Shearer, C.K. (1986) Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll Pegmatite, Black Hills, South Dakota. American Mineralogist, 71, 472–500.Search in Google Scholar

Kutzschbach, M., Wunder, B., Rhede, D., Koch-Müller, M., Ertl, A., Giester, G., Heinrich, W., and Franz, G. (2016) Tetrahedral boron in natural and synthetic HP/UHP tourmaline: Evidence from Raman spectroscopy, EMPA, and single-crystal XRD. American Mineralogist, 101, 93–104.10.2138/am-2016-5341Search in Google Scholar

MacDonald, D.J., Hawthorne, F.C., and Grice, J.D. (1993) Foitite, ◻(Al,Fe3+) Al6Si6O18(BO3)3(OH)4, a new alkali-deficient tourmaline: Description and crystal structure. American Mineralogist, 78, 1299–1303.Search in Google Scholar

Mandarino, J.A. (1981) The Gladstone-Dale relationship. Part IV: The compatibility concept and its application. Canadian Mineralogist, 19, 441–450.Search in Google Scholar

Merlet, C. (1994) An accurate computer correction program for quantitative electron probe microanalysis. Mikrochimica Acta, 114-115, 363–376.10.1007/BF01244563Search in Google Scholar

Novák, M., and Cempírek, J., Eds. (2010) Granitic pegmatites and mineralogical museums in Czech Republic. IMA 2010 Field Trip Guide CZ2. Acta Mineralogica Petrographica Field Guide Series 6, Szeged, p. 1–56.Search in Google Scholar

Novák, M., and Povondra, P. (1995) Elbaite pegmatites in the Moldanubicum: a new subtype of the rare-element class. Mineralogy and Petrology, 55, 159–176.10.1007/BF01162586Search in Google Scholar

Novák, M., Povondra, P., and Selway, J.B. (2004) Schorl-oxy-schorl to dravite-oxydravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. European Journal of Mineralogy, 16, 323–333.10.1127/0935-1221/2004/0016-0323Search in Google Scholar

Novák, M., Škoda, P., Filip, J., Macek, I., and Vaculovič, T. (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. The Canadian Mineralogist, 49, 359–380.10.3749/canmin.49.1.359Search in Google Scholar

Novotný, F. (2020) Mineralogy of the Dolní Rožínka elbaite-subtype pegmatite. M.S. thesis, Faculty of Science, Masaryk University, Brno (in Czech).Search in Google Scholar

Novotný, F., Novák, M., and Cempírek, J. (2019) Chemical composition of tourmaline from the Dolní Rožínka elbaite pegmatite. Bulletin of Mineralogy and Petrology, 27, 38–45.Search in Google Scholar

Orlandi, P., and Pezzotta, F. (1996) Minerali dell’Isola d’Elba, i minerali dei giacimenti metalliferi dell’Elba orientale e delle pegmatiti del Capanne, Monte Ed. Novecento Grafico, Bergamo, 248 pp (in Italian).Search in Google Scholar

Pezzotta, F. (2000) Internal structures, parageneses and classification of the miarolitic (Li-bearing) complex pegmatites of Elba Island (Italy). Mineralogy and Petrology of Shallow Depth Pegmatites. Papers from the First International Workshop. Memorie Della Società Italiana di Scienze Naturali e Del Museo Civico di Storia Naturale di Milano, 30, 29–43.Search in Google Scholar

Pezzotta, F., Hawthorne, F., Cooper, M.A., and Teerstra, D. (1996) Fibrous foitite from S. Piero in Campo, Elba, Italy. Canadian Mineralogist, 34, 741–744.Search in Google Scholar

Pouchou, J.L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In K.F.J. Heinrich and D.E. Newbury, Eds., Electron Probe Quantitation, p. 31–75. Plenum.10.1007/978-1-4899-2617-3_4Search in Google Scholar

Selway, J.B., Novák, M., Černý, P., and Hawthorne, F.C. (1999) Compositional evolution of tourmaline in lepidolite-subtype pegmatites. European Journal of Mineralogy, 11, 569–584.10.1127/ejm/11/3/0569Search in Google Scholar

Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 3–8.Search in Google Scholar

Simmons, W.B., Falster, A.U., and Laurs, B.M. (2011) A survey of Mn-rich yellow tourmaline from worldwide localities and implications for the petrogenesis of the granitic pegmatites. Canadian Mineralogist, 49, 301–319.10.3749/canmin.49.1.301Search in Google Scholar

van Hinsberg, V.J., Henry, D.J., and Marschall, H.R. (2011a) Tourmaline: An ideal indicator of its host environment. Canadian Mineralogist, 49, 1–16.10.3749/canmin.49.1.1Search in Google Scholar

van Hinsberg, V.J., Henry, D.J., and Dutrow, B.L. (2011b) Tourmaline as a pet-rologic forensic mineral: a unique recorder of its geologic past. Elements, 7, 327–332.10.2113/gselements.7.5.327Search in Google Scholar

Wright, S.E., Foley, J.A., and Hughes, J.M. (2000) Optimization of site occupancies in minerals using quadratic programming. American Mineralogist, 85, 524–531.10.2138/am-2000-0414Search in Google Scholar

Zahradníček, L. (2012) Vývoj textur a chemického složení zonálních turmalínů z elbaitového pegmatitu v Pikárci u Křižanova. M. S. thesis, Faculty of Science, Masaryk University, Brno (in Czech).Search in Google Scholar

Zahradníček, L., and Novák, M. (2012) Lithium-bearing micas from elbaite-subtype pegmatites in the Western Moravia, Czech Republic. Acta Musei Moraviae, Scientiae geologicae. In Czech with English Summary, 97, 25–37.Search in Google Scholar

Žák, T., and Jirásková, Y. (2006) CONFIT: Mössbauer spectra fitting program. Surface and Interface Analysis, 38, 710–714.10.1002/sia.2285Search in Google Scholar

Received: 2020-09-21
Accepted: 2021-01-02
Published Online: 2021-12-28
Published in Print: 2022-01-27

© 2022 Mineralogical Society of America

Articles in the same Issue

  1. MSA Presidential Address
  2. MSA at 100 and why optical mineralogy still matters: The optical properties of talc
  3. Boron isotope compositions establish the origin of marble from metamorphic complexes: Québec, New York, and Sri Lanka
  4. Celleriite, (Mn22+Al)Al6(Si6O18)(BO3)3(OH)3(OH), , a new mineral species of the tourmaline supergroup
  5. Jingsuiite, TiB2, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa ophiolite, Tibet, China: Implications for recycling of boron
  6. Incorporation of incompatible trace elements into molybdenite: Layered PbS precipitates within molybdenite
  7. Experimental melt inclusion homogenization in a hydrothermal diamond-anvil cell: Comparison with homogenization at one atmosphere
  8. Thermoelastic properties of zircon: Implications for geothermobarometry
  9. A Rayleigh model of cesium fractionation in granite-pegmatite systems
  10. The atomic arrangement and electronic interactions in vonsenite at 295, 100, and 90 K
  11. Oxalate formation by Aspergillus niger on minerals of manganese ores
  12. High-pressure experimental study of tetragonal CaSiO3-perovskite to 200 GPa
  13. Mesoproterozoic seafloor authigenic glauconite-berthierine: Indicator of enhanced reverse weathering on early Earth
  14. Chemical variability in vyacheslavite, U(PO4)(OH): Crystal-chemical implications for hydrous and hydroxylated U4+, Ca, and REE phosphates
  15. Bennesherite, Ba2Fe2+Si2O7: A new melilite group mineral from the Hatrurim Basin, Negev Desert, Israel
  16. Single-crystal elasticity of phase Egg AlSiO3OH and δ-AlOOH by Brillouin spectroscopy
  17. Letter
  18. On the formation of Martian blueberries
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2021-7818/html
Scroll to top button