Home Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece
Article
Licensed
Unlicensed Requires Authentication

Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece

  • Ioannis Mitsis and Maria Economou-Eliopoulos EMAIL logo
Published/Copyright: March 26, 2015
Become an author with De Gruyter Brill

Abstract

Small irregular to lens-like occurrences (maximum 0.5 × 1 m) of apatite associated with magnetite and silicates are present in the Agoriani area of the Othrys ophiolite complex, central Greece. The Ano Agoriani area is dominated by peridotite (plagioclase lherzolite) of the mantle sequence, intruded by irregular bodies, dikes, and veins of gabbro, as well as by dikes of pyroxenite and pegmatitic gabbro. Apatite occurs as large (up to 3 cm long) well-formed crystals associated with magnetite. The aggregates consist predominantly of apatite, or massive magnetite with subordinate amounts of apatite.

Apatite may also be accompanied by silicate minerals, mainly chlorite and lesser amounts of serpentine, tremolite, and Ni-silicates (nepouite, pimelite), and by Ni-sulfides (pentlandite, violarite, heazlewoodite).

The apatite-magnetite association from the Agoriani area differs from nelsonite hosted by anorthosite suites with respect to: (1) the host rock type (ophiolites); (2) the highly variable proportion between apatite-magnetite; (3) the large size (up to 3 cm) of the apatite crystals; (4) the lack of fluorine (<20 ppm F) in the apatite; (5) the presence of abundant liquid-rich, fluid inclusions in apatite, and (6) the lack of ilmenite.

The high V content (700-1000 ppm) of the magnetite from Agoriani differs from that of disseminated Fe-Ti mineralization (Ti-magnetite, ilmenite) in the magmatic sequence of ophiolite complexes (mainly hosted in gabbronorites), as well as the pure, massive magnetite associated with Fe-Ni-Cu-Co sulfides found in shear zones in ophiolite complexes. The composition of the apatite (chlor-hydroxylapatite), the presence of abundant primary two-phase aqueous fluid inclusions in the apatite, and the composition of the associated magnetite and sulfides, suggest that a hydrothermal system played an essential role in the formation of these deposits.

Received: 2000-12-6
Accepted: 2001-6-22
Published Online: 2015-3-26
Published in Print: 2001-10-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer
  2. Compositional zoning and element partitioning in nickeloan tourmaline from a metamorphosed karstbauxite from Samos, Greece
  3. Occurrence of apatite associated with magnetite in an ophiolite complex (Othrys), Greece
  4. Overpressures induced by coesite-quartz transition in zircon
  5. Geochemical modeling of bacterially induced mineralization of schwertmannite and jarosite in sulfuric acid spring water
  6. H2O-D2O exchange in lawsonite
  7. Composition and temperature dependence of cation ordering in Ni-Mg olivine solid solutions: a time-of-flight neutron powder diffraction and EXAFS study
  8. Thermal conductivity of spinels and olivines from vibrational spectroscopy: Ambient conditions
  9. Elasticity of six polycrystalline silicate garnets at pressure up to 3.0 GPa
  10. The crystal chemistry of birefringent natural uvarovites: Part I. Optical investigations and UV-VIS-IR absorption spectroscopy
  11. The crystal chemistry of birefringent natural uvarovites: Part II. Single-crystal X-ray structures
  12. Ferroanthophyllite in Rockport grunerite: A transmission electron microscopy study
  13. Crystal structure of a new (21)-clinopyribole synthesized at high temperature and pressure
  14. The Mg(Fe)SiO3 orthoenstatite-clinoenstatite transitions at high pressures and temperatures determined by Raman-spectroscopy on quenched samples
  15. Raman spectroscopic studies of phase E to 19 GPa
  16. The crystal structures of the low-temperature phases of leonite-type compounds, K2Me(SO4)2·4H2O (Me2+ = Mg, Mn, Fe)
  17. Carraraite and zaccagnaite, two new minerals from the Carrara marble quarries: their chemical compositions, physical properties, and structural features
  18. Pristine surface growth features on 100 Ma garnet phenocrysts: Interference imaging results
  19. Oxygen triclusters in crystalline CaAl4O7 (grossite) and in calcium aluminosilicate glasses: 17O NMR
  20. Low-temperature heat capacity of pentlandite
  21. Calcium segregation at antiphase boundaries in pigeonite
Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2001-1003/html
Scroll to top button