Home Production of strontium-82 for the Cardiogen® PET generator: a project of the Department of Energy Virtual Isotope Center
Article
Licensed
Unlicensed Requires Authentication

Production of strontium-82 for the Cardiogen® PET generator: a project of the Department of Energy Virtual Isotope Center

  • D. R. Phillips , E. J. Peterson , W.A. Taylor , D. J. Jamriska , V. T. Hamilton , J. J. Kitten , F. O. Valdez , L. L. Salazar , L. R. Pitt , R. C. Heaton , K.L. Kolsky and L.F. Mausner
Published/Copyright: September 25, 2009

In December of 1989, the United States Food and Drug Administration approved 82Rb chloride in saline solution for cardiological perfusion imaging by positron emission tomography (PET). The solution is derived from a 82Sr generator system that is presently manufactured by Bristol Myers Squibb and distributed for clinical application in the United States by Bracco Diagnostics, Inc. Many years of research and development by people in several institutions led up to the approval for clinical use. Currently, there are about 15 sites in the U.S. that perform clinical myocardial perfusion imaging by PET using 82Rb chloride from the generator. In order to manufacture the generators, Bristol Myers Squibb requires about 1600 mCi of 82Sr every 30 days. The United States Department of Energy and MDS Nordion, Canada are the current suppliers with qualified Drug Master Files for the production and distribution of this nuclide for the Cardiogen® generator. These two entities have worked together over the years to assure the regular, reliable supply of the 82Sr. Here we describe the facilities and methods used by the Department of Energy in its Virtual Isotope Center to make and distribute the nuclide.

Published Online: 2009-9-25
Published in Print: 2000-3-1

© 2015 Oldenbourg Wissenschaftsverlag GmbH, Rosenheimer Str. 145, 81671 München

Articles in the same Issue

  1. Preface: Alfred P. Wolf Memorial Issue
  2. Im Memoriam Alfred P. Wolf
  3. The centenary of a controversial discovery: actinium
  4. Proton-induced nuclear reactions in neptunium-237 targets. Production of plutonium tracers in the energy range 15-40 MeV
  5. Possibility of production of 81Rb via the 80Kr(d,n) reaction at a small cyclotron
  6. Positron emission intensity in the decay of 120gI
  7. Production of high specific activity 27Mg by fast neutron irradiation and recoil-aided leaching
  8. Production of strontium-82 for the Cardiogen® PET generator: a project of the Department of Energy Virtual Isotope Center
  9. Lutetium-177-EDTMP for bone pain palliation. Preparation, biodistribution and pre-clinical studies
  10. Thermochromatographic separation of no-carrier-added 186Re or 188Re from tungsten targets relevant to nuclear medical applications
  11. Low energy cyclotron production and chemical separation of "no carrier added" iodine-124 from a reusable, enriched tellurium-124 dioxide/aluminum oxide solid solution target
  12. Physicochemical and radiochemical aspects of separation of radioiodine from TeO2-targets
  13. Novel separation of thallium-201 using p-tert-butylcalix[4]arene derivative
  14. Recovery of 201Tl by ion exchange chromatography from proton bombarded thallium cyclotron targets
  15. Doppler broadening as a probe of the chemical environment following oxygen-14 decay
  16. In-target chemistry during the production of 15O and 11C using 3He reactions
  17. 11C-methane production in small volume, high pressure gas targets
  18. 11C-methylations using 11C-methyl iodide and tetrabutylammonium fluoride
  19. Specific activity of [11C]CO2 generated in a N2 gas target: effect of irradiation dose, irradiation history, oxygen content and beam energy
  20. Effect of dissolved gas on the specific activity of N-13 labeled ions generated in water by the 16O(p,α)13N reaction
  21. Direct n.c.a. radioiodination of weakly activated arenes using metal salts
  22. Synthesis of substituted [123I]imidazo[1,2-α]pyridines as potential probes for the study of the peripheral benzodiazepine receptors using SPECT
  23. Determination of trace impurities in iron-based alloy using neutron activation analysis
  24. EXAFS analyses of technetium(I) carbonyl complexes – stability studies in solutions
  25. Syntheses and structures of technetium(V) and rhenium(V) oxo complexes of peptide having KYC-sequence
Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1524/ract.2000.88.3-4.149/html
Scroll to top button