Home Characterization of the UV-Visible absorption spectra of manganese(III) porphyrins with time-dependent density functional theory calculations
Article
Licensed
Unlicensed Requires Authentication

Characterization of the UV-Visible absorption spectra of manganese(III) porphyrins with time-dependent density functional theory calculations

  • Melinda A. Fodor , Péter Szabó EMAIL logo , György Lendvay EMAIL logo and Ottó Horváth
Published/Copyright: June 24, 2021

Abstract

Mn(III) porphyrins display a unique UV–Vis spectrum: compared to the free-base and other metalloporphyrins, a strong red shift of the Soret-band and several extra bands can be observed in their spectra. To understand this behavior, we have recorded the UV–Vis spectra of differently substituted water-soluble Mn(III) porphyrins and conducted extensive theoretical investigations using time-dependent density functional theory. The calculated optical transitions, using the O3LYP functional, agree well with the measured absorption bands. According to the spectral interpretation, the Soret-band involves a mixture of L–L and ligand-to-metal charge transfer excitations, while the Q-bands and the higher-energy bands in the UV region correspond to pure LMCT as well as to ligand to metal-ligand mixed orbital excitations. The impact of the explicit and implicit water solvent on the spectral features is also discussed.


Corresponding authors: Péter Szabó, Department of Physics and Material Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg; and György Lendvay, Center for Natural Sciences, Department of General and Inorganic Chemistry, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary; and Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary, E-mail: (P. Szabó), (G. Lendvay)

Funding source: Széchenyi 2020

Award Identifier / Grant number: GINOP-2.3.2-15-2016-00016 and VEKOP-2.3.1-16-2017-00013

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Széchenyi 2020 under the GINOP-2.3.2-15-2016-00016 and VEKOP-2.3.1-16-2017-00013.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Calvin, M. Rev. Pure Appl. Chem. 1965, 15, 1.Search in Google Scholar

2. Borg, D. C., Catzias, G. C. Nature 1958, 182, 1677; https://doi.org/10.1038/1821677a0.Search in Google Scholar PubMed

3. Farokhi, A., Hosseini-Monfared, H. A recyclable Mn-porphyrin catalyst for enantioselective epoxidation of unfunctionalized olefins using molecular oxygen. New J. Chem. 2016, 40, 5032; https://doi.org/10.1039/c6nj00808a.Search in Google Scholar

4. Budimir, A., Kalmár, J., Fábian, I., Lente, G., Bányai, I., Batinic-Haberle, I., Birus, M. Dalton Trans. 2010, 39, 4405; https://doi.org/10.1039/b926522h.Search in Google Scholar PubMed

5. Batinic-Haberle, I., Tovmasyan, A., Spasojevic, I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins–From superoxide dismutation to H2O2-driven pathways. Redox Biol. 2015, 5, 43; https://doi.org/10.1016/j.redox.2015.01.017.Search in Google Scholar PubMed PubMed Central

6. Batinic-Haberle, I., Rajic, Z., Tovmasyan, A., Reboucas, J. S., Ye, X., Leong, K. W., Dewhirst, M. W., Vujaskovic, Z., Benov, L., Spasojevic, I. Diverse functions of cationic Mn(III) N-substituted pyridylporphyrins, recognized as SOD mimics. Free Rad. Bio. Med. 2011, 51, 1035; https://doi.org/10.1016/j.freeradbiomed.2011.04.046.Search in Google Scholar PubMed PubMed Central

7. Reboucas, J. S., DeFreitas-Silva, G., Spasojevic, I., Idemori, Y. M., Benov, L., Batinić-Haberle, I. Impact of electrostatics in redox modulation of oxidative stress by Mn porphyrins: protection of SOD-deficient Escherichia coli via alternative mechanism where Mn porphyrin acts as a Mn carrier. Free Rad. Bio. Med. 2008, 45, 210; https://doi.org/10.1016/j.freeradbiomed.2008.04.009.Search in Google Scholar PubMed PubMed Central

8. Reboucas, J. S., DeFreitas-Silva, G., Spasojevic, I., Idemori, Y. M., Benov, L., Batinic-Haberle, I. Challenges encountered during development of Mn porphyrin-based, potent redox-active drug and superoxide dismutase mimic, MnTnBuOE-2-PyP5+, and its alkoxyalkyl analogues. J. Inorg. Biochem. 2017, 169, 50.10.1016/j.jinorgbio.2017.01.003Search in Google Scholar PubMed PubMed Central

9. da Silva, V. S., Teixeira, L. I., do Nascimento, E., Idemori, Y. M., DeFreitas-Silva, G. New Manganase porphyrin as biomimetic catalyst of cyclohexane oxidation: effect of water or imidazole as additives. Appl. Catal., A: Gen. 2014, 469, 124; https://doi.org/10.1016/j.apcata.2013.09.033.Search in Google Scholar

10. Kalmár, J., Biri, B., Lente, G., Bányai, I., Budimir, A., Birus, M., Batinic-Haberle, I., Fábián, I. Detailed mechanism of the autoxidation of N-hydroxurea catalyzed by a superoxide dismutase mimic Mn(III) porphyrin: formation of the nitrosylated Mn(II) porphyrin as an intermediate. Dalton Trans. 2012, 41, 11875; https://doi.org/10.1039/c2dt31200j.Search in Google Scholar PubMed PubMed Central

11. Horváth, O., Valicsek, Z., Harrach, G., Lendvay, G., Fodor, M. A. Spectroscopic and photochemical properties of water-soluble metalloporphyrins of distorted structure. Coord. Chem. Rev. 2012, 256, 1531; https://doi.org/10.1016/j.ccr.2012.02.011.Search in Google Scholar

12. Horváth, O., Valicsek, Z., Fodor, M. A., Major, M. M., Imran, M., Grampp, G., Wankmüller, A. Visible light-driven photophysics and photochemistry of water-soluble metalloporphyrins. Coord. Chem. Rev. 2016, 325, 59; https://doi.org/10.1016/j.ccr.2015.12.011.Search in Google Scholar

13. Fodor, M. A., Horváth, O., Fodor, L., Vazdar, K., Grampp, G., Wankmüller, A. Photophysical and photochemical properties of manganese complexes with cationic porphyrin ligands: effects of alkyl substituents and micellar environment. J. Photochem. Photobiol. Chem. 2016, 328, 233; https://doi.org/10.1016/j.jphotochem.2016.06.011.Search in Google Scholar

14. Gouterman, M. The Phorphyrins, 1st ed.; Academic Press: Cambridge, Massachusetts, 1978.Search in Google Scholar

15. Boucher, L. J. Manganese porphyrin complexes. Coord. Chem. Rev. 1972, 7, 289; https://doi.org/10.1016/s0010-8545(00)80024-7.Search in Google Scholar

16. Davis, T. S., Fackler, J. P., Weeks, M. J. Spectra of manganese(III) complexes. Origin of the low-energy band. Inorg. Chem. 1968, 7, 1994; https://doi.org/10.1021/ic50068a007.Search in Google Scholar

17. Boucher, L. J. Coordination Chemistry, 1st ed.; Springer: Boston, MA, 1969.Search in Google Scholar

18. Mera-Adasme, R., Xu, W.-H., Sundholm, D., Mendizabal, F. Calculations of the light absorption spectra of porphyrinoid chromophores for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2016, 18, 27877; https://doi.org/10.1039/c6cp04627d.Search in Google Scholar PubMed

19. Balanaya, M. P., Kim, D. H. DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2008, 10, 5121; https://doi.org/10.1039/b806097e.Search in Google Scholar PubMed

20. Arooj, Q., Wilson, G. J., Wang, F. Shifting UV-vis absorption spectrum through rational structural modifications of zinc porphyrin photoactive compounds. Phys. Chem. Chem. Phys. 2016, 6, 15345; https://doi.org/10.1039/c5ra25214h.Search in Google Scholar

21. Lind, S. J., Gordon, K. C., Gambhir, S., Officer, D. L. A spectroscopic and DFT study of thiophene-substituted metalloporphyrins as dye-sensitized solar cell dyes. Phys. Chem. Chem. Phys. 2009, 11, 5598; https://doi.org/10.1039/b900988d.Search in Google Scholar PubMed

22. Martynov, A. G., Mack, J., May, A. K., Nyokong, T., Gorbunova, Y. G., Tsivadz, A. Y. Methodological survey of simplified TD-DFT methods for fast and accurate interpretation of UV–Vis–NIR spectra of phthalocyanines. ACS Omega 2019, 4, 7265; https://doi.org/10.1021/acsomega.8b03500.Search in Google Scholar PubMed PubMed Central

23. Jayachandran, P., Gopalan, A. A. P. UV-vis absorption spectra of Sn(IV)tetrakis(4-pyridyl) porphyrins on the basis of axial ligation and pyridine protonation. J. Mol. Model. 2019, 25, 294; https://doi.org/10.1007/s00894-019-4166-5.Search in Google Scholar PubMed

24. Lamsabhi, A. M., Yanez, M., Mo, O., Trujillo, C., Blanco, F., Alkorta, I., Elguero, J., Caballero, E., Rodríguez-Morgade, M. S., Claessens, C. G., Torres, T. TDDFT study of the UV-vis spectra of subporphyrazines and subphthalocyanines. J. Porphyr. Phthalocyanines 2011, 15, 1220; https://doi.org/10.1142/s1088424611004154.Search in Google Scholar

25. Suvitha, A., Belosludov, R. V., Mizuseki, H., Kawazoe, Y., Takeda, M., Kohno, M., Ohuchi, N. TD-DFT studies on hematoporphyrin and its dimers. Mater. Trans. 2008, 49, 2416; https://doi.org/10.2320/matertrans.mb200829.Search in Google Scholar

26. Wang, X., Li, S., Zhao, L., Xu, C., Gao, J. A DFT and TD-DFT study on electronic structures and UV-spectra properties of octaethyl-porphyrin with different central metals (Ni, V, Cu, Co). Chin. J. Chem. Eng. 2020, 28, 532; https://doi.org/10.1016/j.cjche.2019.07.008.Search in Google Scholar

27. Baerends, E. J., Ricciardi, G., Rosa, A., van Gisbergen, S. J. A. A DFT/TDDFT interpretation of the ground and excited states of porphyrin and porphyrazine complexes. Coord. Chem. Rev. 2002, 230, 5; https://doi.org/10.1016/s0010-8545(02)00093-0.Search in Google Scholar

28. Mack, J., Stone, J., Nyokong, T. Trends in the TD-DFT calculations of porphyrin and phthalocyanine analogs. J. Porphyr. Phthalocyanines 2014, 18, 630; https://doi.org/10.1142/s108842461450045x.Search in Google Scholar

29. Kuter, D., Venter, G. A., Naidoo, K. J., Egan, T. J. Experimental and time-dependent density functional theory characterization of the UV-visible spectra of monomeric and -oxo dimeric ferriprotoporphyrin IX. Inorg. Chem. 2012, 19, 10233; https://doi.org/10.1021/ic301154e.Search in Google Scholar PubMed

30. Huszánk, R., Lendvay, G., Horváth, O. Air-stable, heme-like water-soluble iron(II) porphyrin: in situ preparation and characterization. J. Biol. Inorg. Chem. 2007, 12, 681; https://doi.org/10.1007/s00775-007-0217-y.Search in Google Scholar PubMed

31. Valicsek, Z., Lendvay, G., Horváth, O. Equilibrium, photophysical, photochemical, and quantum chemical examination of anionic mercury(II) mono- and bisporphyrins. J. Phys. Chem. B 2008, 112, 14509; https://doi.org/10.1021/jp804039s.Search in Google Scholar PubMed

32. Valicsek, Z., Lendvay, G., Horváth, O. Equilibrium, photophysical, photochemical and quantum chemical examination of anionic mercury(I) porphyrins. J. Porphyr. Phthalocyanines 2009, 13, 910; https://doi.org/10.1142/s1088424609001261.Search in Google Scholar

33. Amor, N. B., Soupart, A., Heitz, M.-C. Methodological CASPT2 study of the valence excited states of an iron-porphyrin complex. J. Mol. Model. 2017, 23, 53; https://doi.org/10.1007/s00894-017-3226-y.Search in Google Scholar PubMed

34. Jannuzzi, S. A. V., Phung, Q. M., Domingo, A., Formiga, A. L. B., Pierloot, K. Spin state energetics and oxyl character of Mn-oxo porphyrins by multiconfigurational ab initio calculations: implications on reactivity. Inorg. Chem. 2016, 55, 5168; https://doi.org/10.1021/acs.inorgchem.5b02920.Search in Google Scholar

35. Ricciarelli, D., Phung, Q. M., Belpassi, L., Harvey, J. N., Belanzoni, P. Understanding the reactivity of Mn-oxo porphyrins for substrate hydroxylation: theoretical predictions and experimental evidence reconciled. Inorg. Chem. 2019, 58, 7345; https://doi.org/10.1021/acs.inorgchem.9b00476.Search in Google Scholar

36. Costa, A., Silva, A. L. P., Tanaka, A. A., Varela, J. J. G. Theoretical study of the interaction between molecular oxygen and tetraaza macrocyclic manganese complexes. J. Mol. Model. 2016, 22, 217; https://doi.org/10.1007/s00894-016-3097-7.Search in Google Scholar

37. Kepenekian, M., Calborean, A., Vetere, V., Guennic, B. L., Robert, V., Maldivi, P. Toward reliable DFT investigations of Mn-porphyrins through CASPT2/DFT comparison. J. Chem. Theor. Comput. 2011, 7, 3532; https://doi.org/10.1021/ct2004066.Search in Google Scholar

38. He, X., Zhou, Y., Wang, L., Li, T., Zhang, M., Shen, T. Photophysical properties of amphiphilic porphyrins in different media. Dyes Pigments 1998, 39, 173; https://doi.org/10.1016/s0143-7208(98)00007-2.Search in Google Scholar

39. Baker, J., Pulay, P. Assessment of the OLYP and O3LYP density functionals for first-row transition metals. J. Comput. Chem. 2003, 24, 1184; https://doi.org/10.1002/jcc.10280.Search in Google Scholar

40. Hoe, W.-M., Handy, N. C., Cohen, A. J. Assessment of a new local exchange functional OPTX. Chem. Phys. Lett. 2001, 341, 319; https://doi.org/10.1016/s0009-2614(01)00581-4.Search in Google Scholar

41. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2012, 2, 73; https://doi.org/10.1002/wcms.81.Search in Google Scholar

42. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2017, e, 1327; https://doi.org/10.1002/wcms.1327.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2020-1787).


Received: 2020-11-24
Accepted: 2021-05-27
Published Online: 2021-06-24
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1787/html
Scroll to top button