Home On model error in variational data assimilation
Article
Licensed
Unlicensed Requires Authentication

On model error in variational data assimilation

  • Victor Shutyaev EMAIL logo , Arthur Vidard , François-Xavier Le Dimet and Igor Gejadze
Published/Copyright: March 28, 2016

Abstract

The problem of variational data assimilation for a nonlinear evolution model is formulated as an optimal control problem to find the initial condition. The optimal solution (analysis) error arises due to the errors in the input data (background and observation errors). Under the Gaussian assumption the optimal solution error covariance can be constructed using the Hessian of the auxiliary data assimilation problem. The aim of this paper is to study the evolution of model errors via data assimilation. The optimal solution error covariances are derived in the case of imperfect model and for the weak constraint formulation, when the model euations determine the cost functional.

MSC: 65K10

Funding

This work was carried out within the SAMOVAR project (CNRS-RAS), Russian Science Foundation project 14-11-00609 (studies in Section 3), and the project 15-01-01583 of the Russian Foundation for Basic Research.

References

[1] S. Akella and I. M. Navon, Different approaches to model error formulation in 4D-Var: a study with high resolution advection schemes. Tellus61A(2009), 112–128.10.1111/j.1600-0870.2008.00362.xSearch in Google Scholar

[2] M. Fisher and P. Courtier, Estimating the covariance matrices of analysis and forecast error in variational data assimilation. ECMWF Research Department Techn. Memo. 220, 1995.Search in Google Scholar

[3] D. Furbish, M. Y. Hussaini, F.-X. Le Dimet, P. Ngnepieba, and Y. Wu, On discretization error and its control in variational data assimilation. Tellus60A(2008), 979–991.10.1111/j.1600-0870.2008.00358.xSearch in Google Scholar

[4] I. Gejadze, L.-X. Le Dimet, and V. Shutyaev, On analysis error covariances in variational data assimilation. SIAM J. Sci. Comput. 30(2008), No. 4, 1847–1874.10.1137/07068744XSearch in Google Scholar

[5] I. Gejadze, F.-X. Le Dimet, and V. Shutyaev, On optimal solution error covariances in variational data assimilation problems. J. Comput. Phys. 229(2010), 2159–2178.10.1016/j.jcp.2009.11.028Search in Google Scholar

[6] I. Gejadze, F.-X. Le Dimet, and V. Shutyaev, Computation of the optimal solution error covariance in variational data assimilation problems with nonlinear dynamics. J. Comput. Phys. 230(2011), 7923–7943.10.1016/j.jcp.2011.03.039Search in Google Scholar

[7] I. Gejadze and V. Shutyaev, An optimal control problem of initial data restoration. Comput. Math. Math. Phys. 39(1999), No. 9, 1416–1425.Search in Google Scholar

[8] I. Gejadze, V. Shutyaev, and F.-X. Le Dimet, Analysis error covariance versus posterior covariance in variational data assimilation. Q. J. R. Meteorol. Soc. 138(2012), 1–16.10.1002/qj.2070Search in Google Scholar

[9] A. K. Griffith and N. K. Nichols, Accounting for model error in data assimilation using adjoint methods. In: Computational Differentiation: Techniques, Applications and Tools(Eds. M. Berz, C. Bischof, G. Corliss, and A. Greiwank). SIAM, Philadelphia, 1996, pp. 195–204.Search in Google Scholar

[10] A. K. Griffith, M. J. Martin, and N. K. Nichols, Techniques for treating systematic model error in 3D and 4D data assimilation. In: Proc. of the Third WMO Int. Symposium on Assimilation of Observations in Meteorology and Oceanography, World Meteorological Organization, 2000, WWRP Report Series No. 2, WMO/TD - No. 986, pp. 9–12.Search in Google Scholar

[11] F.-X. Le Dimet and V. Shutyaev, On deterministic error analysis in variational data assimilation. Nonlinear Processes in Geophysics12(2005), 481–490.10.5194/npg-12-481-2005Search in Google Scholar

[12] F.-X. Le Dimet, V. P. Shutyaev, and I. Gejadze, On optimal solution error in variational data assimilation: theoretical aspects. Russ. J. Numer. Anal. Math. Modelling21(2006), No. 2, 139–152.10.1515/156939806776369492Search in Google Scholar

[13] F.-X. Le Dimet and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus38A(1986), 97–110.10.1111/j.1600-0870.1986.tb00459.xSearch in Google Scholar

[14] J.-L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux derives partielles. Dunod, Paris, 1968.Search in Google Scholar

[15] A. C. Lorenc, Analysis methods for numerical weather prediction, Q. J. R. Meteorol. Soc. 112(1986), 1177–1194.10.1002/qj.49711247414Search in Google Scholar

[16] G. I. Marchuk, V. I. Agoshkov, and V. P. Shutyaev, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems. CRC Press Inc., New York, 1996.Search in Google Scholar

[17] I. M. Navon, Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography. Dynamics of Atmospheres and Oceans27(1997), 55–79.10.1016/S0377-0265(97)00032-8Search in Google Scholar

[18] Y. Sasaki, Some basic formalism in numerical variational analysis. Month. Wea. Rev. 98(1970), No. 12, pp.875–883.10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2Search in Google Scholar

[19] V. P. Shutyaev, F.-X. Le Dimet, and I. Yu. Gejadze, A posteriori error covariances in variational data assimilation. Russ. J. Numer. Anal. Math. Modelling24(2009), No. 2, 161–169.10.1515/RJNAMM.2009.011Search in Google Scholar

[20] A. M. Stuart, Inverse problems: a Bayesian perspective. Acta Numerica19(2010), 451–559.10.1017/S0962492910000061Search in Google Scholar

[21] A. Tarantola, Inverse Problems Theory: Methods for Data Fitting and Model Parameter Estimation. Elsevier, New York, 1987.Search in Google Scholar

[22] W. C. Thacker, The role of the Hessian matrix in fitting models to measurements. J. Geophys. Res. 94(1989), No. C5, 6177– 6196.10.1029/JC094iC05p06177Search in Google Scholar

[23] Y. Trémolet, Accounting for an imperfect model in 4D-Var. Q. J. R. Meteorol. Soc. 132(2007), No. 621, 2483–2504.10.1256/qj.05.224Search in Google Scholar

[24] P. A. Vidard, Vers une prise en compte de lèrreur modèles en assimilation de donnèes 4D-variationnelle. Application à unmodèle réaliste d’océan. Thèse de doctorat, Université Joseph Fourier(Grenoble). December 2001.Search in Google Scholar

[25] P. A. Vidard, E. Blayo, F.-X. Le Dimet, and A. Piacentini, 4D variational data analysis with imperfect model. Flow. Turb. Comb. 65(2000), 489–504.10.1023/A:1011452303647Search in Google Scholar

[26] P. A. Vidard, A. Piacentini, and F.-X. Le Dimet, Variational data analysis with control of the forecast bias. Tellus A56(2004), No. 3, 177–188.10.3402/tellusa.v56i3.14414Search in Google Scholar

Received: 2015-12-25
Accepted: 2016-1-14
Published Online: 2016-3-28
Published in Print: 2016-4-1

© 2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rnam-2016-0011/pdf
Scroll to top button