Abstract
We consider a mathematical model of sea currents and tidal waves based on the marine dynamics primitive equations. The equations are written in the orthogonal coordinate system on sphere with arbitrary position of the poles. It makes it possible to increase horizontal resolution due to placement of a pole into vicinity of the considered sub-area. Two problems are solved: (1) joint computation of wind-generated, baroclinic and tidal currents in the Black and Azov Seas; (2) simulating mesoscale variability of coastal currents in the Black Sea. The second problem is solved with increased horizontal resolution in the coastal zone of Gelendzhik.
References
[1] V. I. Agoshkov, E. I. Parmuzin, and V. P. Shutyaev, Observational data assimilation in the problem of Black Sea circulation and sensitivity analysis of its solution. Izv. Atmos. Ocean. Phys. 49(2013), No. 6, 592–602.10.1134/S0001433813060029Search in Google Scholar
[2] M. V. Assovskii and V. I. Agoshkov, Numerical simulation of general World Ocean dynamics subject to tide-forming forces. Russ. J. Numer. Anal. Math. Modelling26(2011), No. 2, 113–141.10.1515/rjnamm.2011.007Search in Google Scholar
[3] S. G. Demyshev and O. A. Dymova, Numerical analysis of the mesoscale features of circulation in the Black Sea coastal zone. Izv. Atmos. Ocean. Phys. 49(2013), No. 6, 603–610.10.1134/S0001433813060030Search in Google Scholar
[4] N. A. Diansky, V. V. Fomin, N.V. Zhokhova, and A. N. Korshenko, Simulations of currents and pollution transport in the coastal waters of Big Sochi. Izv. Atmos. Ocean. Phys. 49(2013), No. 6, 611–621.10.1134/S0001433813060042Search in Google Scholar
[5] S. F. Dotsenko and V. A. Ivanov, Natural Disasters in Azov–Black Sea Region. MHI NANU, Sevastopol, 2010.Search in Google Scholar
[6] V. A. Ivanov, Spatial and temporal variability and monitoring of hydrophysical fields of the Black Sea. Izv. Atmos. Ocean. Phys. 50(2014), No. 1, 26–34.10.1134/S000143381306008XSearch in Google Scholar
[7] V. A. Ivanov and V. N. Belokopytov, Oceanography of the Black Sea. NAS of Ukraine, Marine Hydrophysical Institute, Sevastopol, 2011 (in Russian).Search in Google Scholar
[8] A. A. Kordzadze and D. I. Demetrashvili, Short-range forecast of hydrophysical fields in the eastern part of the Black Sea. Izv. Atmos. Ocean. Phys. 49(2013), No. 6, 674–685.10.1134/S0001433813060091Search in Google Scholar
[9] G. K. Korotaev, V. V. Knysh, and A. I. Kubryakov, Study of formation process of cold intermediate layer based on reanalysis of Black Sea hydrophysical fields for 1971–1993. Izv. Atmos. Ocean. Phys. 50(2014), No. 1, 35–48.10.1134/S0001433813060108Search in Google Scholar
[10] G. K. Korotaev, T. Oguz, V. L. Dorofeyev, S. G. Demyshev, A. I. Kubryakov, and Yu. B. Ratner, Development of Black Sea nowcasting and forecasting system. Ocean Sci. 7(2011), No. 5, 629–649.10.5194/os-7-629-2011Search in Google Scholar
[11] W. G. Large and S. G. Yeager, The global climatology of an interannually varying air–sea flux data set. Climate Dynamics33(2009), No. 2-3, 341–364.10.1007/s00382-008-0441-3Search in Google Scholar
[12] G. I. Marchuk, Splitting and alternative direction methods. Handbook of Numerical Analysis(Eds. P. G. Ciarlet and J.-L. Lions). North-Holland, Amsterdam, 1990, pp. 197–462.10.1016/S1570-8659(05)80035-3Search in Google Scholar
[13] G. I. Marchuk and B. E. Paton, The Black Sea as a simulation ocean model. Russ. J. Numer. Anal. Math. Modelling27(2012), No. 1, 1–4.10.1515/rnam-2012-0001Search in Google Scholar
[14] G. I. Marchuk, B. E. Paton, G. K. Korotaev, and V. B. Zalesny, Data-computing technologies: A new stage in the development of operational oceanography. Izv. Atmos. Ocean. Phys. 49(2013), No. 6, 579–591.10.1134/S000143381306011XSearch in Google Scholar
[15] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, J. G. Powers, A Description of the Advanced Research WRF, Version 3. NCAR Technical Notes, 2008.Search in Google Scholar
[16] E. V. Stanev, Understanding Black Sea dynamics: overview of recent numerical modelling. Oceanography18(2005), No. 2, 56–75.10.5670/oceanog.2005.42Search in Google Scholar
[17] L. N. Thomas, A. Tandon, and A. Mahadevan, Submesoscale processes and dynamics. In: Ocean Modeling in an Eddying Regime(Eds. M. V. Hecht and H. Hasumi). American Geophysical Union, Washington DC, 2008.10.1029/177GM04Search in Google Scholar
[18] V. P. Yastreb and T. V. Khmara, Comparative description of tidal wave motions in the seas of the Mediterranean type. Ecological Safety of Coastal Shelf Zone and Complex Exploitation of Shelf Resources(2005), No. 12, 60–69 (in Russian).Search in Google Scholar
[19] V. B. Zalesny, N. A. Diansky, V. V. Fomin, S. N. Moshonkin, and S. G. Demyshev, Numerical model of the circulation of the Black Sea and the Sea of Azov. Russ. J. Numer. Anal. Math. Modelling27(2012), No. 1, 95–112.10.1515/rnam-2012-0006Search in Google Scholar
[20] V. B. Zalesny, A. V. Gusev, and S. N. Moshonkin, Numerical model of the hydrodynamics of the Black Sea and the Sea of Azov with variational initialization of temperature and salinity. Izv. Atmos. Ocean. Phys. 49(2013), No. 6, 642–658.10.1134/S0001433813060133Search in Google Scholar
[21] V. B. Zalesny and V. O. Ivchenko, Influence of anomalous regimes in the Southern Ocean on equatorial dynamics. Izv. Atmos. Ocean. Phys. 41(2005), No. 3, 341–359.Search in Google Scholar
[22] V. B. Zalesny, G. I. Marchuk, V. I. Agoshkov, A. V. Bagno, A. V. Gusev, N. A. Diansky, S. N. Moshonkin, R. E. Tamsalu, and E. M. Volodin, Numerical simulation of large-scale ocean circulation based on the multicomponent splitting method. Russ. J. Numer. Anal. Math. Modelling25(2010), No. 6, 581–609.Search in Google Scholar
[23] A. G. Zatsepin, A. G. Ostrovskii, V. V. Kremenetskiy, S. S. Nizov, V. B. Piotukh, V. A. Soloviev, D. A. Shvoev, A. L. Tsibul’sky, S. B. Kuklev, O. N. Kukleva, L. V. Moskalenko, O. I. Podymov, V. I. Baranov, A. A. Kondrashov, A. O. Korzh, A. A. Kubryakov, D. M. Soloviev, and S. V. Stanichny, Subsatellite polygon for studying hydrophysical processes in the Black Sea shelf–slope zone. Izv. Atmos. Ocean. Phys. 50(2014), No. 1, 13–25.10.1134/S0001433813060157Search in Google Scholar
© 2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Preface
- Article
- The study and numerical solution of the problem of heat and salinity transfer assuming ‘liquid’ boundaries
- Article
- Sensitivity of functionals with respect to observations in variational data assimilation
- Article
- Algorithm for solving the problem on pollution risk control related to local sources in a region
- Article
- On model error in variational data assimilation
- Article
- Numerical modelling of sea currents and tidalwaves
Articles in the same Issue
- Frontmatter
- Preface
- Preface
- Article
- The study and numerical solution of the problem of heat and salinity transfer assuming ‘liquid’ boundaries
- Article
- Sensitivity of functionals with respect to observations in variational data assimilation
- Article
- Algorithm for solving the problem on pollution risk control related to local sources in a region
- Article
- On model error in variational data assimilation
- Article
- Numerical modelling of sea currents and tidalwaves