Home Accelerated biological brain aging in major depressive disorder
Article
Licensed
Unlicensed Requires Authentication

Accelerated biological brain aging in major depressive disorder

  • Eng Han How , Shar-Maine Chin , Chuin Hau Teo ORCID logo EMAIL logo , Ishwar S. Parhar and Tomoko Soga
Published/Copyright: July 15, 2024
Become an author with De Gruyter Brill

Abstract

Major depressive disorder (MDD) patients commonly encounter multiple types of functional disabilities, such as social, physical, and role functioning. MDD is related to an accreted risk of brain atrophy, aging-associated brain diseases, and mortality. Based on recently available studies, there are correlations between notable biological brain aging and MDD in adulthood. Despite several clinical and epidemiological studies that associate MDD with aging phenotypes, the underlying mechanisms in the brain remain unknown. The key areas in the study of biological brain aging in MDD are structural brain aging, impairment in functional connectivity, and the impact on cognitive function and age-related disorders. Various measurements have been used to determine the severity of brain aging, such as the brain age gap estimate (BrainAGE) or brain-predicted age difference (BrainPAD). This review summarized the current results of brain imaging data on the similarities between the manifestation of brain structural changes and the age-associated processes in MDD. This review also provided recent evidence of BrainPAD or BrainAGE scores in MDD, brain structural abnormalities, and functional connectivity, which are commonly observed between MDD and age-associated processes. It serves as a basis of current reference for future research on the potential areas of investigation for diagnostic, preventive, and potentially therapeutic purposes for brain aging in MDD.


Corresponding author: Chuin Hau Teo, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia, E-mail:
Eng Han How and Shar-Maine Chin share first authorship.

Acknowledgments

The authors would like to acknowledge the support of the Jeffrey Cheah School of Medicine and Health Sciences in Monash University Malaysia in the completion of this article.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

Aktas, O., Ullrich, O., Infante-Duarte, C., Nitsch, R., and Zipp, F. (2007). Neuronal damage in brain inflammation. Archiv. Neurol. 64: 185–189, https://doi.org/10.1001/archneur.64.2.185.Search in Google Scholar PubMed

Albert, K.M., Potter, G.G., Boyd, B.D., Kang, H., and Taylor, W.D. (2019). Brain network functional connectivity and cognitive performance in major depressive disorder. J. Psychiatr. Res. 110: 51–56, https://doi.org/10.1016/j.jpsychires.2018.11.020.Search in Google Scholar PubMed PubMed Central

Al-Khatib, Y., Akhtar, M.A., Kanawati, M.A., Mucheke, R., Mahfouz, M., and Al-Nufoury, M. (2022). Depression and metabolic syndrome: a narrative review. Cureus 14: e22153, https://doi.org/10.7759/cureus.22153.Search in Google Scholar PubMed PubMed Central

Almeida, O.P., Burton, E.J., Ferrier, N., McKeith, I.G., and O’Brien, J.T. (2003). Depression with late onset is associated with right frontal lobe atrophy. Psychol. Med. 33: 675–681, https://doi.org/10.1017/s003329170300758x.Search in Google Scholar PubMed

American Psychiatric Association (2013). Diagnostic and statistical Manual of mental disorders V. American Psychiatric Association, Washington, D.C.10.1176/appi.books.9780890425596Search in Google Scholar

Barlow, D.H., Sauer-Zavala, S., Carl, J.R., Bullis, J.R., and Ellard, K.K. (2014). The nature, diagnosis, and treatment of neuroticism:back to the future. Clin. Psychol. Sci. 2: 344–365, https://doi.org/10.1177/2167702613505532.Search in Google Scholar

Beblo, T., Driessen, M., and Dehn, L. (2020). Memory deficits in patients with major depression: yes, they are trying hard enough. Expert. Rev. Neurother. 20: 517–522, https://doi.org/10.1080/14737175.2020.1754799.Search in Google Scholar PubMed

Beheshti, I., Maikusa, N., and Matsuda, H. (2018). The association between “brain-age score”(BAS) and traditional neuropsychological screening tools in Alzheimer’s disease. Brain. Behav. 8: e01020, https://doi.org/10.1002/brb3.1020.Search in Google Scholar PubMed PubMed Central

Besteher, B., Gaser, C., and Nenadic, I. (2019). Machine-learning based brain age estimation in major depression showing no evidence of accelerated aging. Psychiatr. Res. Neuroimaging 290: 1–4, https://doi.org/10.1016/j.pscychresns.2019.06.001.Search in Google Scholar PubMed

Beyreuther, K. and Masters, C.L. (1995). Neurodegeneration and dementia. Alzheimer’s disease as a model. Arzneimittelforschung 45: 347–350.Search in Google Scholar

Blom, K., Koek, H.L., van der Graaf, Y., Zwartbol, M.H.T., Wisse, L.E.M., Hendrikse, J., Biessels, G.J., Geerlings, M.I., and Group, S.S. (2019). Hippocampal sulcal cavities: prevalence, risk factors and association with cognitive performance. The SMART-Medea study and PREDICT-MR study. Brain Imaging Behav. 13: 1093–1102, https://doi.org/10.1007/s11682-018-9916-y.Search in Google Scholar PubMed PubMed Central

Boyle, R., Jollans, L., Rueda-Delgado, L.M., Rizzo, R., Yener, G.G., McMorrow, J.P., Knight, S.P., Carey, D., Robertson, I.H., Emek-Savaş, D.D., et al.. (2021). Brain-predicted age difference score is related to specific cognitive functions: a multi-site replication analysis. Brain Imaging Behav. 15: 327–345, https://doi.org/10.1007/s11682-020-00260-3.Search in Google Scholar PubMed PubMed Central

Breslau, N. and Davis, G.C. (1986). Chronic stress and major depression. Archiv. Gen. Psychiatry 43: 309–314, https://doi.org/10.1001/archpsyc.1986.01800040015003.Search in Google Scholar PubMed

Bueno-Notivol, J., Gracia-Garcia, P., Olaya, B., Lasheras, I., Lopez-Anton, R., and Santabarbara, J. (2021). Prevalence of depression during the COVID-19 outbreak: a meta-analysis of community-based studies. Int. J. Clin. Health Psychol. 21: 100196, https://doi.org/10.1016/j.ijchp.2020.07.007.Search in Google Scholar PubMed PubMed Central

Burriss, L., Ayers, E., Ginsberg, J., and Powell, D. (2008). Learning and memory impairment in PTSD: relationship to depression. Depressi Anxiety 25: 149–157, https://doi.org/10.1002/da.20291.Search in Google Scholar PubMed

Campbell, S. and Macqueen, G. (2004). The role of the hippocampus in the pathophysiology of major depression. J. Psychiatr. Neurosci. 29: 417–426.Search in Google Scholar

Canas-Gonzalez, B., Fernandez-Nistal, A., Ramirez, J.M., and Martinez-Fernandez, V. (2020). Influence of stress and depression on the immune system in patients evaluated in an anti-aging unit. Front. Psychol. 11: 1844, https://doi.org/10.3389/fpsyg.2020.01844.Search in Google Scholar PubMed PubMed Central

Cao, B., Mwangi, B., Passos, I.C., Wu, M.J., Keser, Z., Zunta-Soares, G.B., Xu, D., Hasan, K.M., and Soares, J.C. (2017). Lifespan gyrification trajectories of human brain in healthy individuals and patients with major psychiatric disorders. Sci. Rep. 7: 511, https://doi.org/10.1038/s41598-017-00582-1.Search in Google Scholar PubMed PubMed Central

Carroll, B.J. (2002). Ageing, stress and the brain. In: Endocrine facets of ageing: novartis foundation symposium, Vol. 242. Wiley Online Library, London. https://doi.org/10.1002/0470846542.ch3.Search in Google Scholar

Chen, C., Jiang, W.H., Wang, W., Ma, X.C., Li, Y., Wu, J., Hashimoto, K., and Gao, C.G. (2018). Impaired visual, working, and verbal memory in first-episode, drug-naive patients with major depressive disorder in a Chinese population. PLoS One 13: e0196023, https://doi.org/10.1371/journal.pone.0196023.Search in Google Scholar PubMed PubMed Central

Chen, M.H., Chang, W.C., Tu, P.C., Lin, W.C., Li, C.T., Huang, W.S., Bai, Y.M., Tsai, S.J., and Su, T.P. (2022). Association of cognitive impairment and reduced cortical thickness in prefrontal cortex and anterior cingulate cortex with treatment-resistant depression. Brain Imaging Behav. 16: 1854–1862, https://doi.org/10.1007/s11682-021-00613-6.Search in Google Scholar PubMed

Chen, M.H., Li, C.T., Tsai, C.F., Lin, W.C., Chang, W.H., Chen, T.J., Pan, T.L., Su, T.P., and Bai, Y.M. (2015). Risk of subsequent dementia among patients with bipolar disorder or major depression: a nationwide longitudinal study in Taiwan. J. Am. Med. Dir. Assoc. 16: 504–508, https://doi.org/10.1016/j.jamda.2015.01.084.Search in Google Scholar PubMed

Cheng, Y., Xu, J., Dong, C., Shen, Z., Zhou, C., Li, N., Lu, Y., Ran, L., Xu, L., Shan, B., et al.. (2020). Age-related atrophy of cortical thickness and genetic effect of ANK3 gene in first episode MDD patients. Neuroimage Clin. 28: 102384, https://doi.org/10.1016/j.nicl.2020.102384.Search in Google Scholar PubMed PubMed Central

Cole, J.H. and Franke, K. (2017). Predicting age using neuroimaging: innovative brain ageing biomarkers. Trends Neurosci. 40: 681–690, https://doi.org/10.1016/j.tins.2017.10.001.Search in Google Scholar PubMed

Connolly, M.J. and Yohannes, A.M. (2016). The impact of depression in older patients with chronic obstructive pulmonary disease and asthma. Maturitas 92: 9–14, https://doi.org/10.1016/j.maturitas.2016.07.005.Search in Google Scholar PubMed

Darrow, S.M., Verhoeven, J.E., Révész, D., Lindqvist, D., Penninx, B.W., Delucchi, K.L., Wolkowitz, O.M., and Mathews, C.A. (2016). The association between psychiatric disorders and telomere length: a meta-analysis involving 14,827 persons. Psychosom. Med. 78: 776–787, https://doi.org/10.1097/psy.0000000000000356.Search in Google Scholar PubMed PubMed Central

Depping, M.S., Schmitgen, M.M., Bach, C., Listunova, L., Kienzle, J., Kubera, K.M., Roesch-Ely, D., and Wolf, R.C. (2020). Abnormal cerebellar volume in patients with remitted major depression with persistent cognitive deficits. Cerebellum 19: 762–770, https://doi.org/10.1007/s12311-020-01157-z.Search in Google Scholar PubMed PubMed Central

Douillard-Guilloux, G., Guilloux, J.P., Lewis, D.A., and Sibille, E. (2013). Anticipated brain molecular aging in major depression. Am. J. Geriatr. Psychiatr. 21: 450–460, https://doi.org/10.1016/j.jagp.2013.01.040.Search in Google Scholar PubMed PubMed Central

Dunlop, K., Victoria, L.W., Downar, J., Gunning, F.M., and Liston, C. (2021). Accelerated brain aging predicts impulsivity and symptom severity in depression. Neuropsychopharmacology 46: 911–919, https://doi.org/10.1038/s41386-021-00967-x.Search in Google Scholar PubMed PubMed Central

El-Baba, R.M. and Schury, M.P. (2023). Neuroanatomy, frontal cortex. StatPearls, Treasure island, FL.Search in Google Scholar

Elliott, M.L., Belsky, D.W., Knodt, A.R., Ireland, D., Melzer, T.R., Poulton, R., Ramrakha, S., Caspi, A., Moffitt, T.E., and Hariri, A.R. (2021). Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol. Psychiatry 26: 3829–3838, https://doi.org/10.1038/s41380-019-0626-7.Search in Google Scholar PubMed PubMed Central

Franke, K., Ziegler, G., Klöppel, S., Gaser, C., and Alzheimer’s Disease Neuroimaging Initiative (2010). Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. Neuroimage 50: 883–892, https://doi.org/10.1016/j.neuroimage.2010.01.005.Search in Google Scholar PubMed

Ghanei Gheshlagh, R., Parizad, N., and Sayehmiri, K. (2016). The relationship between depression and metabolic syndrome: systematic review and meta-analysis study. Iran Red Crescent Med. J. 18: e26523, https://doi.org/10.5812/ircmj.26523.Search in Google Scholar PubMed PubMed Central

Goebel, M., Fleming, S.M., Million, M., Stengel, A., Taché, Y., and Wang, L. (2010). Mice overexpressing corticotropin-releasing factor show brain atrophy and motor dysfunctions. Neurosci. Lett. 473: 11–15, https://doi.org/10.1016/j.neulet.2010.01.068.Search in Google Scholar PubMed PubMed Central

Hammar, Å., Ronold, E.H., and Rekkedal, G.Å. (2022). Cognitive impairment and neurocognitive profiles in major depression—a clinical perspective. Front. Psychiatry 13: 764374, https://doi.org/10.3389/fpsyt.2022.764374.Search in Google Scholar PubMed PubMed Central

Hammen, C.L. (2015). Stress and depression: old questions, new approaches. Curr. Opin. Psychol. 4: 80–85, https://doi.org/10.1016/j.copsyc.2014.12.024.Search in Google Scholar

Han, L.K.M., Aghajani, M., Clark, S.L., Chan, R.F., Hattab, M.W., Shabalin, A.A., Zhao, M., Kumar, G., Xie, L.Y., Jansen, R., et al.. (2018). Epigenetic aging in major depressive disorder. Am. J. Psychiatry 175: 774–782, https://doi.org/10.1176/appi.ajp.2018.17060595.Search in Google Scholar PubMed PubMed Central

Han, L.K.M., Dinga, R., Hahn, T., Ching, C.R.K., Eyler, L.T., Aftanas, L., Aghajani, M., Aleman, A., Baune, B.T., Berger, K., et al.. (2021a). Brain aging in major depressive disorder: results from the ENIGMA major depressive disorder working group. Mol. Psychiatry 26: 5124–5139, https://doi.org/10.1038/s41380-020-0754-0.Search in Google Scholar PubMed PubMed Central

Han, L.K.M., Schnack, H.G., Brouwer, R.M., Veltman, D.J., van der Wee, N.J.A., van Tol, M.-J., Aghajani, M., and Penninx, B.W.J.H. (2021b). Contributing factors to advanced brain aging in depression and anxiety disorders. Transl. Psychiatry 11: 402, https://doi.org/10.1038/s41398-021-01524-2.Search in Google Scholar PubMed PubMed Central

Han, S., Chen, Y., Zheng, R., Li, S., Jiang, Y., Wang, C., Fang, K., Yang, Z., Liu, L., Zhou, B., et al.. (2021c). The stage-specifically accelerated brain aging in never-treated first-episode patients with depression. Hum. Brain Mapp. 42: 3656–3666, https://doi.org/10.1002/hbm.25460.Search in Google Scholar PubMed PubMed Central

Hu, J., Liu, J., Liu, Y., Wu, X., Zhuang, K., Chen, Q., Yang, W., Xie, P., Qiu, J., and Wei, D. (2021). Dysfunction of the anterior and intermediate hippocampal functional network in major depressive disorders across the adult lifespan. Biol. Psychol. 165: 108192, https://doi.org/10.1016/j.biopsycho.2021.108192.Search in Google Scholar PubMed

Huang, C.J., Weng, S.F., Wang, J.J., and Hsieh, H.M. (2021). Competing risk analysis of the association between dementia and major depressive disorder: a nationwide population-based study in Taiwan. Aging Ment. Health 25: 766–772, https://doi.org/10.1080/13607863.2020.1720598.Search in Google Scholar PubMed

Kochunov, P., Glahn, D.C., Rowland, L.M., Olvera, R.L., Winkler, A., Yang, Y.H., Sampath, H., Carpenter, W.T., Duggirala, R., Curran, J., et al.. (2013). Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biol Psychiatry 73: 482–491, https://doi.org/10.1016/j.biopsych.2012.10.002.Search in Google Scholar PubMed PubMed Central

Koo, P.C., Berger, C., Kronenberg, G., Bartz, J., Wybitul, P., Reis, O., and Hoeppner, J. (2019). Combined cognitive, psychomotor and electrophysiological biomarkers in major depressive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 269: 823–832, https://doi.org/10.1007/s00406-018-0952-9.Search in Google Scholar PubMed

Koutsouleris, N., Davatzikos, C., Borgwardt, S., Gaser, C., Bottlender, R., Frodl, T., Falkai, P., Riecher-Rossler, A., Moller, H.J., Reiser, M., et al.. (2014). Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr. Bull 40: 1140–1153, https://doi.org/10.1093/schbul/sbt142.Search in Google Scholar PubMed PubMed Central

Kriesche, D., Woll, C.F., Tschentscher, N., Engel, R.R., and Karch, S. (2023). Neurocognitive deficits in depression: a systematic review of cognitive impairment in the acute and remitted state. Eur. Arch. Psychiatry Clin. Neurosci. 273: 1105–1128, https://doi.org/10.1007/s00406-022-01479-5.Search in Google Scholar PubMed PubMed Central

Lebedeva, A., Sundström, A., Lindgren, L., Stomby, A., Aarsland, D., Westman, E., Winblad, B., Olsson, T., and Nyberg, L. (2018). Longitudinal relationships among depressive symptoms, cortisol, and brain atrophy in the neocortex and the hippocampus. Acta Psychiatr. Scand. 137: 491–502, https://doi.org/10.1111/acps.12860.Search in Google Scholar PubMed

Leonard, B.E. (2018). Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatrica 30: 1–16, https://doi.org/10.1017/neu.2016.69.Search in Google Scholar PubMed

Liou, Y.J., Tsai, S.J., Bai, Y.M., Chen, T.J., and Chen, M.H. (2023). Dementia risk in middle-aged patients with schizophrenia, bipolar disorder, and major depressive disorder: a cohort study of 84,824 subjects. Eur. Arch Psychiatry Clin. Neurosci. 273: 219–227, https://doi.org/10.1007/s00406-022-01389-6.Search in Google Scholar PubMed

Liu, G., Jiao, K., Zhong, Y., Hao, Z., Wang, C., Xu, H., Teng, C., Song, X., Xiao, C., Fox, P.T., et al.. (2021a). The alteration of cognitive function networks in remitted patients with major depressive disorder: an independent component analysis. Behav. Brain Res. 400: 113018, https://doi.org/10.1016/j.bbr.2020.113018.Search in Google Scholar PubMed

Liu, Y., Meng, J., Wang, K., Zhuang, K., Chen, Q., Yang, W., Qiu, J., and Wei, D. (2021b). Morphometry of the Hippocampus across the adult life-span in patients with depressive disorders: association with neuroticism. Brain Topogr. 34: 587–597, https://doi.org/10.1007/s10548-021-00846-0.Search in Google Scholar PubMed

Lorenzo, E.C., Kuchel, G.A., Kuo, C.-L., Moffitt, T.E., and Diniz, B.S. (2023). Major depression and the biological hallmarks of aging. Ageing Res. Rev. 83: 101805, https://doi.org/10.1016/j.arr.2022.101805.Search in Google Scholar PubMed PubMed Central

Luo, J., le Cessie, S., Blauw, G.J., Franceschi, C., Noordam, R., and van Heemst, D. (2022a). Systemic inflammatory markers in relation to cognitive function and measures of brain atrophy: a Mendelian randomization study. GeroScience 44: 2259–2270, https://doi.org/10.1007/s11357-022-00602-7.Search in Google Scholar PubMed PubMed Central

Luo, Y., Chen, W., Qiu, J., and Jia, T. (2022b). Accelerated functional brain aging in major depressive disorder: evidence from a large scale fMRI analysis of Chinese participants. Transl. Psychiatry 12: 397, https://doi.org/10.1038/s41398-022-02162-y.Search in Google Scholar PubMed PubMed Central

Madan, C.R. (2021). Age-related decrements in cortical gyrification: evidence from an accelerated longitudinal dataset. Eur. J. Neurosci. 53: 1661–1671, https://doi.org/10.1111/ejn.15039.Search in Google Scholar PubMed PubMed Central

Magraner, M., Coret, F., and Casanova, B. (2012). The relationship between inflammatory activity and brain atrophy in natalizumab treated patients. Eur. J. Radiol. 81: 3485–3490, https://doi.org/10.1016/j.ejrad.2012.01.028.Search in Google Scholar PubMed

Maller, J.J., Reglade-Meslin, C., Thomson, R.H., Daigle, M., Barr, M.S., Daskalakis, Z.J., and Fitzgerald, P.B. (2013). Hippocampal sulcal cavities in depression and healthy individuals. J. Affect Disord. 150: 785–789, https://doi.org/10.1016/j.jad.2013.02.039.Search in Google Scholar PubMed

Manish, K., Jha, C.C.F., Abu Minhajuddin, Mayes, Taryn L., and Trivedi, Madhukar H. (2023). Accelerated brain aging in adults with major depressive disorder predicts poorer outcome with sertraline: findings from the EMBARC study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 8: 462–470, https://doi.org/10.1016/j.bpsc.2022.09.006.Search in Google Scholar PubMed PubMed Central

Markov, N.T., Lindbergh, C.A., Staffaroni, A.M., Perez, K., Stevens, M., Nguyen, K., Murad, N.F., Fonseca, C., Campisi, J., Kramer, J., et al.. (2022). Age-related brain atrophy is not a homogenous process: different functional brain networks associate differentially with aging and blood factors. Proc. Natl. Acad. Sci. U S A 119, e2207181119. https://doi.org/10.1073/pnas.2207181119.Search in Google Scholar PubMed PubMed Central

Marzo, R.R., Vinay, V., Bahari, R., Chauhan, S., Ming, D.A.F., Nelson Fernandez, S.F.A., Johnson, C.C.P., Thivakaran, A.Q.A., Rahman, M.M., and Goel, S. (2021). Depression and anxiety in Malaysian population during third wave of the COVID-19 pandemic. Clin. Epidemiol. Glob. Health 12: 100868, https://doi.org/10.1016/j.cegh.2021.100868.Search in Google Scholar PubMed PubMed Central

Nedelec, T., Couvy-Duchesne, B., Monnet, F., Daly, T., Ansart, M., Gantzer, L., Lekens, B., Epelbaum, S., Dufouil, C., and Durrleman, S. (2022). Identifying health conditions associated with Alzheimer’s disease up to 15 years before diagnosis: an agnostic study of French and British health records. Lancet Digit Health 4: e169–e178, https://doi.org/10.1016/s2589-7500(21)00275-2.Search in Google Scholar PubMed

Patel, A., Biso, G., and Fowler, J.B. (2023). Neuroanatomy, temporal lobe. StatPearls, Treasure Island, FL.Search in Google Scholar

Peters, R. (2006). Ageing and the brain. Postgrad. Med. J. 82: 84–88, https://doi.org/10.1136/pgmj.2005.036665.Search in Google Scholar PubMed PubMed Central

Ridout, K.K., Ridout, S.J., Price, L.H., Sen, S., and Tyrka, A.R. (2016). Depression and telomere length: a meta-analysis. J. Affect Disord. 191: 237–247, https://doi.org/10.1016/j.jad.2015.11.052.Search in Google Scholar PubMed PubMed Central

Rose, M.R. (2009). Adaptation, aging, and genomic information. Aging 1: 444–450, https://doi.org/10.18632/aging.100053.Search in Google Scholar PubMed PubMed Central

Sacchet, M.D., Camacho, M.C., Livermore, E.E., Thomas, E.A.C., and Gotlib, I.H. (2017). Accelerated aging of the putamen in patients with major depressive disorder. J. Psychiatry Neurosci. 42: 164–171, https://doi.org/10.1503/jpn.160010.Search in Google Scholar PubMed PubMed Central

Sala-Llonch, R., Idland, A.-V., Borza, T., Watne, L.O., Wyller, T.B., Brækhus, A., Zetterberg, H., Blennow, K., Walhovd, K.B., and Fjell, A.M. (2017). Inflammation, amyloid, and atrophy in the aging brain: relationships with longitudinal changes in cognition. J. Alzheimer. Dis. 58: 829–840, https://doi.org/10.3233/jad-161146.Search in Google Scholar

Schaefer, J.K., Engert, V., Valk, S.L., Singer, T., and Puhlmann, L.M.C. (2024). Mapping pathways to neuronal atrophy in healthy, mid-aged adults: from chronic stress to systemic inflammation to neurodegeneration? Brain Behav Immun Health 38: 100781, https://doi.org/10.1016/j.bbih.2024.100781.Search in Google Scholar PubMed PubMed Central

Schmaal, L., Hibar, D.P., Samann, P.G., Hall, G.B., Baune, B.T., Jahanshad, N., Cheung, J.W., van Erp, T.G.M., Bos, D., Ikram, M.A., et al.. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22: 900–909, https://doi.org/10.1038/mp.2016.60.Search in Google Scholar PubMed PubMed Central

Schwert, C., Stohrer, M., Aschenbrenner, S., Weisbrod, M., and Schroder, A. (2019). Neurocognitive profile of outpatients with unipolar depressive disorders. J. Clin. Exp. Neuropsychol. 41: 913–924, https://doi.org/10.1080/13803395.2019.1634180.Search in Google Scholar PubMed

Szymkowicz, S.M., Gerlach, A.R., Homiack, D., and Taylor, W.D. (2023). Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl. Psychiatry 13: 160, https://doi.org/10.1038/s41398-023-02464-9.Search in Google Scholar PubMed PubMed Central

Tafet, G.E. and Bernardini, R. (2003). Psychoneuroendocrinological links between chronic stress and depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 27: 893–903, https://doi.org/10.1016/s0278-5846(03)00162-3.Search in Google Scholar

Talati, A., van Dijk, M.T., Pan, L., Hao, X., Wang, Z., Gameroff, M., Dong, Z., Kayser, J., Shankman, S., Wickramaratne, P.J., et al.. (2022). Putamen structure and function in familial risk for depression: a multimodal imaging study. Biol. Psychiatry 92: 932–941, https://doi.org/10.1016/j.biopsych.2022.06.035.Search in Google Scholar PubMed PubMed Central

Tao, P., Yang, S.N., Tung, Y.C., and Yang, M.C. (2019). Development of Alzheimer disease in old major depressive patients based upon their health status: a retrospective study in Taiwan. Medicine 98: e15527, https://doi.org/10.1097/md.0000000000015527.Search in Google Scholar

Trifu, S.C., Trifu, A.C., Aluas, E., Tataru, M.A., and Costea, R.V. (2020). Brain changes in depression. Rom. J. Morphol. Embryol. 61: 361–370, https://doi.org/10.47162/rjme.61.2.06.Search in Google Scholar PubMed PubMed Central

Tsuji, T., Matsudaira, K., Sato, H., and Vietri, J. (2016). The impact of depression among chronic low back pain patients in Japan. BMC Musculoskelet. Disord. 17: 447, https://doi.org/10.1186/s12891-016-1304-4.Search in Google Scholar PubMed PubMed Central

Vance, M.C., Bui, E., Hoeppner, S.S., Kovachy, B., Prescott, J., Mischoulon, D., Walton, Z.E., Dong, M., Nadal, M.F., Worthington, J.J., et al.. (2018). Prospective association between major depressive disorder and leukocyte telomere length over two years. Psychoneuroendocrinology 90: 157–164, https://doi.org/10.1016/j.psyneuen.2018.02.015.Search in Google Scholar PubMed PubMed Central

Verhoeven, J.E., Révész, D., Picard, M., Epel, E.E., Wolkowitz, O.M., Matthews, K.A., Penninx, B., and Puterman, E. (2018). Depression, telomeres and mitochondrial DNA: between- and within-person associations from a 10-year longitudinal study. Mol. Psychiatry 23: 850–857, https://doi.org/10.1038/mp.2017.48.Search in Google Scholar PubMed

Wagenmakers, M.J., Oudega, M.L., Klaus, F., Wing, D., Orav, G., Han, L.K.M., Binnewies, J., Beekman, A.T.F., Veltman, D.J., Rhebergen, D., et al.. (2023). BrainAge of patients with severe late-life depression referred for electroconvulsive therapy. J. Affect Disord. 330: 1–6, https://doi.org/10.1016/j.jad.2023.02.047.Search in Google Scholar PubMed

Walker, K.A., Hoogeveen, R.C., Folsom, A.R., Ballantyne, C.M., Knopman, D.S., Windham, B.G., Jack, C.R.Jr., and Gottesman, R.F. (2017). Midlife systemic inflammatory markers are associated with late-life brain volume: the ARIC study. Neurology 89: 2262–2270, https://doi.org/10.1212/wnl.0000000000004688.Search in Google Scholar

Wang, Y.M., Zou, L.Q., Xie, W.L., Yang, Z.Y., Zhu, X.Z., Cheung, E.F.C., Sørensen, T.A., Møller, A., and Chan, R.C.K. (2019). Altered functional connectivity of the default mode network in patients with Schizo-obsessive comorbidity: a comparison between schizophrenia and obsessive-compulsive disorder. Schizophr. Bull 45: 199–210, https://doi.org/10.1093/schbul/sbx194.Search in Google Scholar PubMed PubMed Central

W.H.O. (2021). Depression. Available at: https://www.who.int/news-room/fact-sheets/detail/depression#:∼:text=Overview,world%20have%20depression%20(1) (cited 04 February 2023).Search in Google Scholar

Wium-Andersen, M.K., Ørsted, D.D., Rode, L., Bojesen, S.E., and Nordestgaard, B.G. (2017). Telomere length and depression: prospective cohort study and Mendelian randomisation study in 67 306 individuals. Br. J. Psychiatry 210: 31–38, https://doi.org/10.1192/bjp.bp.115.178798.Search in Google Scholar PubMed

Wolkowitz, O.M., Reus, V.I., and Mellon, S.H. (2011). Of sound mind and body: depression, disease, and accelerated aging. Dialogues Clin. Neurosci. 13: 25–39, https://doi.org/10.31887/dcns.2011.13.1/owolkowitz.Search in Google Scholar

Woodward, N.D. and Cascio, C.J. (2015). Resting-state functional connectivity in psychiatric disorders. JAMA Psychiatry 72: 743–744, https://doi.org/10.1001/jamapsychiatry.2015.0484.Search in Google Scholar PubMed PubMed Central

Yegorov, Y.E., Poznyak, A.V., Nikiforov, N.G., Sobenin, I.A., and Orekhov, A.N. (2020). The link between chronic stress and accelerated aging. Biomedicines 8: 198, https://doi.org/10.3390/biomedicines8070198.Search in Google Scholar PubMed PubMed Central

Yoshii, T., Oishi, N., Ikoma, K., Nishimura, I., Sakai, Y., Matsuda, K., Yamada, S., Tanaka, M., Kawata, M., Narumoto, J., et al.. (2017). Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model. Sci. Rep. 7: 12731, https://doi.org/10.1038/s41598-017-12917-z.Search in Google Scholar PubMed PubMed Central

Zhang, C.K., Hewett, J., Hemming, J., Grant, T., Zhao, H., Abraham, C., Oikonomou, I., Kanakia, M., Cho, J.H., and Proctor, D.D. (2013). The influence of depression on quality of life in patients with inflammatory bowel disease. Inflamm. Bowel. Dis. 19: 1732–1739, https://doi.org/10.1097/mib.0b013e318281f395.Search in Google Scholar

Zhang, F.F., Peng, W., Sweeney, J.A., Jia, Z.Y., and Gong, Q.Y. (2018a). Brain structure alterations in depression: psychoradiological evidence. CNS Neurosci. Ther. 24: 994–1003.10.1111/cns.12835Search in Google Scholar PubMed PubMed Central

Zhang, Y., Chen, Y., and Lina, M. (2018b). Depression and cardiovascular disease in elderly: current understanding. J. Clin. Neurosci. 47: 1–5, https://doi.org/10.1016/j.jocn.2017.09.022.Search in Google Scholar PubMed

Zhang, W., Xiao, D., Mao, Q., and Xia, H. (2023). Role of neuroinflammation in neurodegeneration development. Signal Transduc. Target. Ther. 8: 267, https://doi.org/10.1038/s41392-023-01486-5.Search in Google Scholar PubMed PubMed Central

Received: 2024-02-07
Accepted: 2024-06-26
Published Online: 2024-07-15
Published in Print: 2024-12-17

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0025/html
Scroll to top button