Home Role of central oxytocin and dopamine systems in nociception and their possible interactions: suggested hypotheses
Article
Licensed
Unlicensed Requires Authentication

Role of central oxytocin and dopamine systems in nociception and their possible interactions: suggested hypotheses

  • Mohammed Gamal-Eltrabily and Alfredo Manzano-García ORCID logo EMAIL logo
Published/Copyright: December 9, 2017
Become an author with De Gruyter Brill

Abstract

Central oxytocin and dopamine have an important role in the process of nociception at the spinal level as well as supraspinal structures, e.g. anterior cingulate cortex, insular cortex, amygdala, nucleus accumbens, and hypothalamus. Many studies have pointed out the importance of both systems in the pain descending modulatory system and in pain-related symptoms in some chronic disorders, e.g. Parkinson disease and fibromyalgia. The interaction between oxytocin and dopamine systems has been addressed in some motivational behaviors, e.g. maternal and sexual behaviors, pair bonding, and salience. In this aspect, we propose that an oxytocin-dopamine interaction could be present in nociception, and we also explain the possible hypotheses of such an interaction between these systems.

Acknowledgments

M. Gamal-Eltrabily is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and receives a fellowship (808245) from CONACyT. A. Manzano-García is a doctoral student from Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), and receives a fellowship (597467) from CONACyT. Thanks are due to Dr. Miguel Condés-Lara and Dr. Francisco Pellicer Graham for their aid in the preparation of the manuscript and their critical reviews, Funder name: Consejo Nacional de Ciencia y Tecnología, Funder Id: 10.13039/501100003141.

References

Abercrombie, E.D., Keefe, K.A., DiFrischia, D.S., and Zigmond, M.J. (1989). Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J. Neurochem. 52, 1655–1658.10.1111/j.1471-4159.1989.tb09224.xSearch in Google Scholar PubMed

Altier, N. and Stewart, J. (1999). The role of dopamine in the nucleus accumbens in analgesia. Life Sci. 65, 2269–22687.10.1016/S0024-3205(99)00298-2Search in Google Scholar PubMed

Anderberg, U.M. and Uvnäs-Moberg, K. (2000). Plasma oxytocin levels in female fibromyalgia syndrome patients. Z. Rheumatol. 59, 373–379.10.1007/s003930070045Search in Google Scholar PubMed

Angioni, L., Cocco, C., Ferri, G.-L., Argiolas, A., Melis, M.R., and Sanna F. (2016). Involvement of nigral oxytocin in locomotor activity: a behavioral, immunohistochemical and lesion study in male rats. Horm. Behav. 83, 23–38.10.1016/j.yhbeh.2016.05.012Search in Google Scholar PubMed

Argiolas, A. and Melis, M.R. (2004). The role of oxytocin and the paraventricular nucleus in the sexual behaviour of male mammals. Physiol. Behav. 83, 309–317.10.1016/S0031-9384(04)00358-0Search in Google Scholar

Argiolas, A. and Melis, M.R. (2013). Neuropeptides and central control of sexual behaviour from the past to the present: a review. Prog. Neurobiol. 108, 80–107.10.1016/j.pneurobio.2013.06.006Search in Google Scholar PubMed

Averbeck, B.B. (2010). Oxytocin and the salience of social cues. Proc. Natl. Acad. Sci. USA 107, 9033–9034.10.1073/pnas.1004892107Search in Google Scholar PubMed PubMed Central

Bale, T.L., Davis, A.M., Auger, A.P., Dorsa, D.M. and McCarthy, M.M. (2001). CNS region-specific oxytocin receptor expression: importance in regulation of anxiety and sex behavior. J. Neurosci. 21, 2546–2552.10.1523/JNEUROSCI.21-07-02546.2001Search in Google Scholar PubMed PubMed Central

Bancroft, J. (2005). The endocrinology of sexual arousal. J. Endocrinol. 186, 411–427.10.1677/joe.1.06233Search in Google Scholar PubMed

Basbaum, A.I., Bautista, D.M., Scherrer, G., and Julius, D. (2009). Cellular and molecular mechanisms of pain. Cell 139, 267–284.10.1016/j.cell.2009.09.028Search in Google Scholar PubMed PubMed Central

Baskerville, T.A. and Douglas, A.J. (2010). Dopamine and oxytocin interactions underlying behaviors: potential contributions to behavioral disorders. CNS Neurosci. Ther. 16, 92–123.10.1111/j.1755-5949.2010.00154.xSearch in Google Scholar PubMed PubMed Central

Baskerville, T.A., Allard, J., Wayman, C., and Douglas, A.J. (2009). Dopamine-oxytocin interactions in penile erection. Eur. J. Neurosci. 30, 2151–2164.10.1111/j.1460-9568.2009.06999.xSearch in Google Scholar PubMed

Black, L.V., Ness, T.J., and Robbins, M.T. (2009). Effects of oxytocin and prolactin on stress-induced bladder hypersensitivity in female rats. J. Pain 10, 1065–1072.10.1016/j.jpain.2009.04.007Search in Google Scholar PubMed PubMed Central

Boccia, M.L., Petrusz, P., Suzuki, K., Marson, L., and Pedersen, C.A. (2013). Immunohistochemical localization of oxytocin receptors in human brain. Neuroscience 253, 155–164.10.1016/j.neuroscience.2013.08.048Search in Google Scholar PubMed

Bromberg-Martin, E.S., Matsumoto, M., and Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834.10.1016/j.neuron.2010.11.022Search in Google Scholar PubMed PubMed Central

Buijs, R.M. (1978). Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res. 192, 423–435.10.1007/BF00212323Search in Google Scholar PubMed

Buijs, R.M., Geffard, M., Pool, C.W., and Hoorneman, E.M. (1984). The dopaminergic innervation of the supraoptic and paraventricular nucleus. A light and electron microscopical study. Brain Res. 323, 65–72.10.1016/0006-8993(84)90265-8Search in Google Scholar PubMed

Burkey, A.R., Carstens, E., and Jasmin L. (1999). Dopamine reuptake inhibition in the rostral agranular insular cortex produces antinociception. J. Neurosci. 19, 4169–4179.10.1523/JNEUROSCI.19-10-04169.1999Search in Google Scholar PubMed PubMed Central

Champagne, F.A., Chretien, P., Stevenson, C.W., Zhang, T.Y., Gratton, A., and Meaney, M.J. (2004). Variations in nucleus accumbens dopamine associated with individual differences in maternal behavior in the rat. J. Neurosci. 24, 4113–4123.10.1523/JNEUROSCI.5322-03.2004Search in Google Scholar PubMed PubMed Central

Chow, L.H., Chen, Y.H., Wu, W.C., Chang, E.P., and Huang, E.Y. (2016). Sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats with intraplantar carrageenan-induced inflammation. PLoS One 11, 162–218.10.1371/journal.pone.0162218Search in Google Scholar PubMed PubMed Central

Condés-Lara, M., Veinante, P., Rabai, M., Freund-Mercier, M.J. (1994). Correlation between oxytocin neuronal sensitivity and oxytocin-binding sites in the amygdala of the rat: electrophysiological and histoautoradiographic study. Brain Res. 637, 277–286.10.1016/0006-8993(94)91245-9Search in Google Scholar PubMed

Condés-Lara, M., Rojas-Piloni, G., Martínez-Lorenzana, G., Rodríguez-Jiménez, J., López Hidalgo, M, Freund-Mercier, M.J. (2006). Paraventricular hypothalamic influences on spinal nociceptive processing. Brain Res. 1081, 126–137.10.1016/j.brainres.2006.01.050Search in Google Scholar PubMed

Condés-Lara, M., Martínez-Lorenzana, G., Rojas-Piloni, G., and Rodríguez-Jiménez, J. (2007). Branched oxytocinergic innervations from the paraventricular hypothalamic nuclei to superficial layers in the spinal cord. Brain Res. 1160, 20–29.10.1016/j.brainres.2007.05.031Search in Google Scholar PubMed

Condés-Lara, M., Rojas-Piloni, G., Martínez-Lorenzana, G., Diez-Martínez, D.C., and Rodríguez-Jiménez, J. (2012). Functional interactions between the paraventricular hypothalamic nucleus and raphe magnus. A comparative study of an integrated homeostatic analgesic mechanism. Neuroscience 209, 196–207.10.1016/j.neuroscience.2012.02.032Search in Google Scholar PubMed

Condés-Lara, M., Zayas-González, H., Manzano-García, A., Córdova-Quiroz, E., Granados-Mortera, J., García-Cuevas, M., Morales-Gómez, J., and González-Hernández, A. (2016). Successful pain management with epidural oxytocin. CNS Neurosci. Ther. 22, 532–534.10.1111/cns.12551Search in Google Scholar PubMed PubMed Central

D’Angio, M., Serrano, A., Rivy, J.P., and Scatton, B. (1987). Tail-pinch stress increases extracellular DOPAC levels (as measured by in vivo voltammetry) in the rat nucleus accumbens but not frontal cortex: antagonism by diazepam and zolpidem. Brain Res. 409, 169–174.10.1016/0006-8993(87)90755-4Search in Google Scholar PubMed

Decavel, C., Geffard, M., and Calas, A. (1987). Comparative study of dopamine- and noradrenaline-immunoreactive terminals in the paraventricular and supraoptic nuclei of the rat. Neurosci. Lett. 77, 149–154.10.1016/0304-3940(87)90577-5Search in Google Scholar PubMed

Dumais, K.M., Alonso, A.G., Bredewold, R., and Veenema, A.H. (2016). Role of the oxytocin system in amygdala subregions in the regulation of social interest in male and female rats. Neuroscience 330, 138–149.10.1016/j.neuroscience.2016.05.036Search in Google Scholar PubMed PubMed Central

Eliava, M., Melchior, M., Knobloch-Bollmann, H.S., Wahis, J., da Silva Gouveia, M., Tang, Y., Ciobanu, A.C., Triana del Rio, R., Roth, L.C., Althammer, F., et al. (2016). A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89, 1291–1304.10.1016/j.neuron.2016.01.041Search in Google Scholar PubMed PubMed Central

Erbaş, O., Oltulu, F., and Taşkiran, D. (2012). Amelioration of rotenone-induced dopaminergic cell death in the striatum by oxytocin treatment. Peptides 38, 312–317.10.1016/j.peptides.2012.05.026Search in Google Scholar PubMed

Ford, B. (1998). Pain in Parkinson’s disease. Clin. Neurosci. 5, 63–72.Search in Google Scholar

Francis, D.D., Champagne, F.C., and Meaney, M.J. (2000). Variations in maternal behaviour are associated with differences in oxytocin receptor levels in the rat. J. Neuroendocrinol. 12, 1145–1148.10.1046/j.1365-2826.2000.00599.xSearch in Google Scholar PubMed

Gao, L. and Yu, L.C. (2004). Involvement of opioid receptors in the oxytocin-induced antinociception in the central nervous system of rats. Regul. Pept. 120, 53–58.10.1016/j.regpep.2004.02.011Search in Google Scholar PubMed

Gao, X., Zhang, Y., and Wu, G. (2001). Effects of dopaminergic agents on carrageenan hyperalgesia after intrathecal administration to rats. Eur. J. Pharmacol. 418, 73–77.10.1016/S0014-2999(01)00930-XSearch in Google Scholar

Ge, Y., Lundeberg, T., and Yu, L.C. (2002). Blockade effect of mu and kappa opioid antagonists on the anti-nociception induced by intra-periaqueductal grey injection of oxytocin in rats. Brain Res. 927, 204–207.10.1016/S0006-8993(01)03346-7Search in Google Scholar PubMed

Gimpl, G. and Fahrenholz, F. (2001). The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683.10.1152/physrev.2001.81.2.629Search in Google Scholar PubMed

Gingrich, B., Lui, Y., Cascio, C., Wang, Z., and Insel, T.R. (2000). Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav. Neurosci. 114, 173–183.10.1037//0735-7044.114.1.173Search in Google Scholar PubMed

Giuliano, F., Allard, J., Rampin, O., Droupy, S., Benoit, G., Alexandre, L., and Bernabe, J. (2001a). Spinal proerectile effect of apomorphine in the anesthetized rat. Int. J. Impot. Res. 13, 110–115.10.1038/sj.ijir.3900654Search in Google Scholar PubMed

Giuliano, F., Bernabé, J., McKenna, K., Longueville, F., and Rampin O. (2001b). Spinal proerectile effect of oxytocin in anesthetized rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280, 1870–1877.10.1152/ajpregu.2001.280.6.R1870Search in Google Scholar PubMed

Godínez-Chaparro, B., Martínez-Lorenzana, G., Rodríguez-Jiménez, J., Manzano-García, A., Rojas-Piloni, G., Condés-Lara, M., and González-Hernández A. (2016). The potential role of serotonergic mechanisms in the spinal oxytocin-induced antinociception. Neuropeptides. 60, 51–60.10.1016/j.npep.2016.07.002Search in Google Scholar PubMed

Gong, L., Gao, F., Li, J., Li, J., Yu, X., Ma, X., Zheng, W., Cui, S., Liu, K., Zhang, M., et al. (2015). Oxytocin-induced membrane hyperpolarization in pain-sensitive dorsal root ganglia neurons mediated by Ca2+/nNOS/NO/KATP pathway. Neuroscience 289, 417–428.10.1016/j.neuroscience.2014.12.058Search in Google Scholar PubMed

González-Hernández, A., Rojas-Piloni, G., and Condés-Lara, M. (2014). Oxytocin and analgesia: future trends. Trends Pharmacol. Sci. 35, 549–551.10.1016/j.tips.2014.09.004Search in Google Scholar

Gu, X.L. and Yu, L.C. (2007). Involvement of opioid receptors in oxytocin-induced antinociception in the nucleus accumbens of rats. J. Pain 8, 85–90.10.1016/j.jpain.2006.07.001Search in Google Scholar

Han, Y. and Yu, L.C. (2009). Involvement of oxytocin and its receptor in nociceptive modulation in the central nucleus of amygdala of rats. Neurosci. Lett. 454, 101–104.10.1016/j.neulet.2009.02.062Search in Google Scholar

Hansen, S., Harthon, C., Wallin, E., Löfberg, L., and Svensson, K. (1991). Mesotelencephalic dopamine system and reproductive behavior in the female rat: effects of ventral tegmental 6-hydroxydopamine lesions on maternal and sexual responsiveness. Behav. Neurosci. 105, 588–598.10.1037/0735-7044.105.4.588Search in Google Scholar

Harsing, L.G., Jr. and Zigmond, M.J. (1997). Influence of dopamine on GABA release in striatum: evidence for D1-D2 interactions and non-synaptic influences. Neuroscience 77, 419–429.10.1016/S0306-4522(96)00475-7Search in Google Scholar

Holstege, J.C., Van Dijken, H., Buijs, R.M., Goedknegt, H., Gosens, T., and Bongers, C.M. (1996). Distribution of dopamine immunoreactivity in the rat, cat and monkey spinal cord. J. Comp. Neurol. 376, 631–652.10.1002/(SICI)1096-9861(19961223)376:4<631::AID-CNE10>3.0.CO;2-PSearch in Google Scholar

Hsieh, G.C., Hollingsworth, P.R., Martino, B., Chang, R.J., Terranova, M.A., O’Neill, A.B., Lynch, J.J., Moreland, R.B., Donnelly-Roberts, D.L., Kolasa, T., et al. (2004). Central mechanisms regulating penile erection in conscious rats: the dopaminergic systems related to the proerectile effect of apomorphine. J. Pharmacol. Exp. Ther. 308, 330–338.10.1124/jpet.103.057455Search in Google Scholar

Jasmin, L., Burkey, A.R., Granato, A., and Ohara, P.T. (2004). Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J. Comp. Neurol. 468, 425–40.10.1002/cne.10978Search in Google Scholar

Jensen, T.S. and Yaksh, T.L. (1984). Effects of an intrathecal dopamine agonist, apomorphine, on thermal and chemical evoked noxious responses in rats. Brain Res. 296, 285–293.10.1016/0006-8993(84)90064-7Search in Google Scholar

Johansen, J.P., Fields, H.L., and Manning, B.H. (2001).The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc. Natl. Acad. Sci. USA 98, 8077–8082.10.1073/pnas.141218998Search in Google Scholar

Johnson, Z.V. and Young, L.J. (2017). Oxytocin and vasopressin neural networks: implications for social behavioral diversity and translational neuroscience. Neurosci. Biobehav. Rev. 76, 87–98.10.1016/j.neubiorev.2017.01.034Search in Google Scholar PubMed PubMed Central

Knobloch, H.S., Charlet, A., Hoffmann, L.C., Eliava, M., Khrulev, S., Cetin, A.H., Osten, P., Schwarz, M.K., Seeburg, P.H., Stoop, R., et al. (2012). Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73, 553–566.10.1016/j.neuron.2011.11.030Search in Google Scholar PubMed

Lang, R.E., Heil, J.W., Ganten, D., Hermann, K., Unger, T., and Rascher, W. (1983). Oxytocin unlike vasopressin is a stress hormone in the rat. Neuroendocrinology 37, 314–316.10.1159/000123566Search in Google Scholar PubMed

Ledermann, K., Jenewein, J., Sprott, H., Hasler, G., Schnyder, U., Warnock, G., Johayem, A., Kollias, S., Buck, A., and Martin-Soelch, C. (2017). Altered dopamine responses to monetary rewards in female fibromyalgia patients with and without depression: a [11C]Raclopride bolus-plus-infusion PET study. Psychother. Psychosom. 86, 181–182.10.1159/000455927Search in Google Scholar PubMed

Liu, Y. (1996). Nitric oxide influences dopaminergic processes. Adv. Neuroimmunol. 6, 259–264.10.1016/S0960-5428(96)00021-6Search in Google Scholar

Liu, Y. and Wang, Z.X. (2003). Nucleus accumbens oxytocin and dopamine interact to regulate pair bond formation in female prairie voles. Neuroscience 121, 537–544.10.1016/S0306-4522(03)00555-4Search in Google Scholar PubMed

López-Avila, A., Coffeen, U., Ortega-Legaspi, J.M., del Angel, R., and Pellicer, F. (2004). Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. Pain 111, 136–143.10.1016/j.pain.2004.06.010Search in Google Scholar PubMed

Love, T.M. (2014). Oxytocin, motivation and the role of dopamine. Pharmacol. Biochem. Behav. 119, 49–60.10.1016/j.pbb.2013.06.011Search in Google Scholar PubMed PubMed Central

Lundeberg, T., Uvnäs-Moberg, K., Agren, G., and Bruzelius, G. (1994). Anti-nociceptive effects of oxytocin in rats and mice. Neurosci. Lett. 170, 153–157.10.1016/0304-3940(94)90262-3Search in Google Scholar PubMed

Mack, S.O., Kc, P., Wu, M., Coleman, B.R., Tolentino-Silva, F.P., and Haxhiu, M.A. (2002). Paraventricular oxytocin neurons are involved in neural modulation of breathing. J. Appl. Physiol. 92, 826–834.10.1152/japplphysiol.00839.2001Search in Google Scholar PubMed

Madrazo, I., Franco-Bourland, R.E., Leon-Meza, V.M., and Mena, I. (1987). Intraventricular somatostatin-14, arginine vasopressin, and oxytocin: analgesic effect in a patient with intractable cancer pain. Appl. Neurophysiol. 50, 427–431.10.1159/000100753Search in Google Scholar PubMed

Mahoney, P.D., Koh, E.T., Irvin, R.W., and Ferris, C.F. (1990). Computer-aided mapping of vasopressin neurons in the hypothalamus of the male golden hamster: evidence of magnocellular neurons that do not project to the neurohypophysis. J. Neuroendocrinol. 2, 113–122.10.1111/j.1365-2826.1990.tb00840.xSearch in Google Scholar PubMed

Martínez-Lorenzana, G., Espinosa-López, L., Carranza, M., Aramburo, C., Paz-Tres, C., Rojas-Piloni, G., and Condés-Lara, M. (2008). PVN electrical stimulation prolongs withdrawal latencies and releases oxytocin in cerebrospinal fluid, plasma, and spinal cord tissue in intact and neuropathic rats. Pain 140, 265–273.10.1016/j.pain.2008.08.015Search in Google Scholar PubMed

Mameli, S., Pisanu, G.M., Sardo, S., Marchi, A., Pili, A., Carboni, M., Minerba, L., Trincas, G., Carta, M.G., Melis, M.R., et al. (2014). Oxytocin nasal spray in fibromyalgic patients. Rheumatol. Int. 34, 1047–1052.10.1007/s00296-014-2953-ySearch in Google Scholar PubMed

Melis, M.R. and Argiolas, A. (2011). Central control of penile erection: a re-visitation of the role of oxytocin and its interaction with dopamine and glutamic acid in male rats. Neurosci. Biobehav. Rev. 35, 939–55.10.1016/j.neubiorev.2010.10.014Search in Google Scholar PubMed

Melis, M.R., Succu, S., Iannucci, U., and Argiolas, A. (1997). Oxytocin increases nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats: correlation with penile erection and yawning. Regul. Pept. 69, 105–111.10.1016/S0167-0115(97)00002-5Search in Google Scholar

Melis, M.R., Succu, S., Mascia, M.S., Cortis, L., and Argiolas, A. (2003). Extra-cellular dopamine increases in the paraventricular nucleus of male rats during sexual activity. Eur. J. Neurosci. 17, 1266–1272.10.1046/j.1460-9568.2003.02558.xSearch in Google Scholar PubMed

Melis, M.R., Melis, T., Cocco, C., Succu, S., Sanna, F., Pillolla, G., Boi, A., Ferri, G.L., and Argiolas, A. (2007). Oxytocin injected into the VTA induces penile erection and increases extracellular dopamine in the nucleus accumbens and paraventricular nucleus of the hypothalamus of male rats. Eur. J. Neurosci. 26, 1026–1035.10.1111/j.1460-9568.2007.05721.xSearch in Google Scholar PubMed

Miranda-Cardenas, Y., Rojas-Piloni, G., Martínez-Lorenzana, G., Rodríguez-Jiménez, J., López-Hidalgo, M., Freund-Mercier, M.J., and Condés-Lara, M. (2006). Oxytocin and electrical stimulation of the paraventricular hypothalamic nucleus produce antinociceptive effects that are reversed by an oxytocin antagonist. Pain 122, 182–189.10.1016/j.pain.2006.01.029Search in Google Scholar PubMed

Moaddab, M., Hyland, B.I., and Brown, C.H. (2015). Oxytocin excites nucleus accumbens shell neurons in vivo. Mol. Cell Neurosci. 68, 323–330.10.1016/j.mcn.2015.08.013Search in Google Scholar PubMed

Moos, F. and Richard, P. (1982). Excitatory effect of dopamine on oxytocin and vasopressin reflex releases in the rat. Brain Res. 241, 249–60.10.1016/0006-8993(82)91061-7Search in Google Scholar PubMed

Moreno-López, Y., Martínez-Lorenzana, G., Condés-Lara, M., and Rojas-Piloni, G. (2013). Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons. Neuropeptides 47, 117–123.10.1016/j.npep.2012.09.008Search in Google Scholar PubMed

Nelson, E. and Panksepp, J. (1996). Oxytocin mediates acquisition of maternally associated odor preferences in preweanling rat pups. Behav. Neurosci. 110, 583–592.10.1037//0735-7044.110.3.583Search in Google Scholar PubMed

Numan, M. and Stolzenberg, D.S. (2009). Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front. Neuroendocrinol. 30, 46–64.10.1016/j.yfrne.2008.10.002Search in Google Scholar PubMed

Ohara, P.T., Granato, A., Moallem, T.M., Wang, B.R., Tillet, Y., and Jasmin, L. (2003). Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat. J. Neurocytol. 32, 131–141.10.1023/B:NEUR.0000005598.09647.7fSearch in Google Scholar

Olds, J. and Milner, P. (1954). Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, 419–427.10.1037/h0058775Search in Google Scholar PubMed

Pedersen, C.A., Ascher, J.A., Monroe, Y.L., and Prange, A.J. Jr. (1982). Oxytocin induces maternal behavior in virgin female rats. Science 216, 648–650.10.1126/science.7071605Search in Google Scholar PubMed

Pedersen, C.A., Caldwell, J.D., Walker, C., Ayers, G., and Mason, G.A. (1994). Oxytocin activates the postpartum onset of rat maternal behavior in the ventral tegmental and medial preoptic areas. Behav. Neurosci. 108, 1163–1171.10.1037/0735-7044.108.6.1163Search in Google Scholar

Petersson, M., Alster, P., Lundeberg, T., and Uvnäs-Moberg, K. (1996). Oxytocin increases nociceptive thresholds in a long-term perspective in female and male rats. Neurosci. Lett 212, 87–90.10.1016/0304-3940(96)12773-7Search in Google Scholar PubMed

Pezze, M.A. and Feldon, J. (2004). Mesolimbic dopaminergic pathways in fear conditioning. Prog. Neurobiol. 74, 301–320.10.1016/j.pneurobio.2004.09.004Search in Google Scholar PubMed

Rash, J.A., Aguirre-Camacho, A., and Campbell, T.S. (2014). Oxytocin and pain: a systematic review and synthesis of findings. Clin. J. Pain 30, 453–462.10.1097/AJP.0b013e31829f57dfSearch in Google Scholar PubMed

Roeling, T.A., Veening, J.G., Peters, J.P., Vermelis, M.E., and Nieuwenhuys, R. (1993). Efferent connections of the hypothalamic “grooming area” in the rat. Neuroscience 56, 199–225.10.1016/0306-4522(93)90574-YSearch in Google Scholar

Rojas-Piloni, G., López-Hidalgo, M., Martínez-Lorenzana, G., Rodríguez-Jiménez, J., and Condés-Lara, M. (2007). GABA-mediated oxytocinergic inhibition in dorsal horn neurons by hypothalamic paraventricular nucleus stimulation. Brain Res. 1137, 69–77.10.1016/j.brainres.2006.12.045Search in Google Scholar PubMed

Rojas-Piloni, G., Rodríguez-Jiménez, J., Martínez-Lorenzana, G., and Condés-Lara, M. (2012). Dorsal horn antinociception mediated by the paraventricular hypothalamic nucleus and locus coeruleous: a comparative study. Brain Res. 1461, 41–50.10.1016/j.brainres.2012.04.042Search in Google Scholar PubMed

Russell, J.A., Leng, G., and Douglas, A.J. (2003).The magnocellular oxytocin system, the fount of maternity: adaptations in pregnancy. Front. Neuroendocrinol. 24, 27–61.10.1016/S0091-3022(02)00104-8Search in Google Scholar PubMed

Russo, R., D’Agostino, G., Mattace Raso, G., Avagliano, C., Cristiano, C., Meli, R., and Calignano, A. (2012). Central administration of oxytocin reduces hyperalgesia in mice: implication for cannabinoid and opioid systems. Peptides 38, 81–88.10.1016/j.peptides.2012.08.005Search in Google Scholar PubMed

Sanna, F., Succu, S., Hübner, H., Gmeiner, P., Argiolas, A., and Melis, M.R. (2011). Dopamine D2-like receptor agonists induce penile erection in male rats: differential role of D2, D3 and D4 receptors in the paraventricular nucleus of the hypothalamus. Behav. Brain Res. 225, 169–176.10.1016/j.bbr.2011.07.018Search in Google Scholar PubMed

Sanna, F., Succu, S., Melis, M.R., and Argiolas, A. (2012). Dopamine agonist-induced penile erection and yawning: differential role of D2-like receptor subtypes and correlation with nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats. Behav. Brain Res. 230, 355–364.10.1016/j.bbr.2012.02.033Search in Google Scholar PubMed

Sawchenko, P.E. and Swanson, L.W. (1982). Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol. 205, 260–272.10.1002/cne.902050306Search in Google Scholar PubMed

Schestatsky, P., Kumru, H., Valls-Solé, J., Valldeoriola, F., Marti, M.J., Tolosa, E., and Chaves, M.L. (2007). Neurophysiologic study of central pain in patients with Parkinson disease. Neurology 69, 2162–2169.10.1212/01.wnl.0000295669.12443.d3Search in Google Scholar PubMed

Scott, D.J., Heitzeg, M.M., Koeppe, R.A., Stohler, C.S., and Zubieta, J.K. (2006). Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci. 26, 789–795.10.1523/JNEUROSCI.2577-06.2006Search in Google Scholar PubMed PubMed Central

Seip, K.M. and Morrell, J.I. (2009). Transient inactivation of the ventral tegmental area selectively disrupts the expression of conditioned place preference for pup- but not cocaine-paired contexts. Behav. Neurosci. 123, 1325–1338.10.1037/a0017666Search in Google Scholar PubMed PubMed Central

Shahrokh, D.K., Zhang, T.Y., Diorio, J., Gratton, A., and Meaney, M.J. (2010). Oxytocin-dopamine interactions mediate variations in maternal behavior in the rat. Endocrinology. 151, 2276–2286.10.1210/en.2009-1271Search in Google Scholar PubMed PubMed Central

Sibly, D.R., Monsma, F.J. Jr., and Shen, Y. (1993). Molecular neurobiology of dopaminergic receptors. Int. Rev. Neurobiol. 35, 391415.10.1016/S0074-7742(08)60573-5Search in Google Scholar PubMed

Slaoui, T., Mas-Gerdelat, A., Ory-Magne, F., Rascol, O., and Brefel-Courbon, C. (2007). Levodopa modifies pain thresholds in Parkinson’s disease patients. Rev. Neurol. (Paris) 163, 66–71.10.1016/S0035-3787(07)90356-2Search in Google Scholar PubMed

Smeltzer, M.D., Curtis, J.T., Aragona, B.J., and Wang, Z. (2006). Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci. Lett. 394, 146–151.10.1016/j.neulet.2005.10.019Search in Google Scholar PubMed

Sofroniew, M.V. and Weindl, A. (1978). Projections from the parvocellular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus. Am. J. Anat. 153, 391–429.10.1002/aja.1001530305Search in Google Scholar PubMed

Sotres-Bayón, F., Torres-López, E., López-Avila, A., del Angel, R., and Pellicer, F. (2001). Lesion and electrical stimulation of the ventral tegmental area modify persistent nociceptive behavior in the rat. Brain Res. 898, 342–349.10.1016/S0006-8993(01)02213-2Search in Google Scholar

Succu, S., Sanna, F., Cocco, C., Melis, T., Boi, A., Ferri, G.L., Argiolas, A., Melis, M.R. (2008). Oxytocin induces penile erection when injected into the ventral tegmental area of male rats: role of nitric oxide and cyclic GMP. Eur. J. Neurosci. 28, 813–821.10.1111/j.1460-9568.2008.06385.xSearch in Google Scholar PubMed

Swanson, L.W. and Kuypers, H.G.J.M. (1980). The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neur. 194, 555–570.10.1002/cne.901940306Search in Google Scholar PubMed

Tamae, A., Nakatsuka, T., Koga, K., Kato, G., Furue, H., Katafuchi, T., and Yoshimura, M. (2005). Direct inhibition of substantia gelatinosa neurones in the rat spinal cord by activation of dopamine D2-like receptors. J. Physiol. 568, 243–253.10.1113/jphysiol.2005.091843Search in Google Scholar PubMed PubMed Central

Taylor, B.K., Joshi, C., and Uppal, H. (2003). Stimulation of dopamine D2 receptors in the nucleus accumbens inhibits inflammatory pain. Brain Res. 987, 135–143.10.1016/S0006-8993(03)03318-3Search in Google Scholar

Veronneau-Longueville, F., Rampin, O., Freund-Mercier, M.J., Tang, Y., Calas, A., Marson, L., McKenna, K.E., Stoeckel, M.E., Benoit, G., and Giuliano, F. (1999). Oxytocinergic innervation of autonomic nuclei controlling penile erection in the rat. Neuroscience 93, 1437–1447.10.1016/S0306-4522(99)00262-6Search in Google Scholar PubMed

Voisin, D.L., Herbison, A.E., and Poulain, D.A. (1995). Central inhibitory effects of muscimol and bicuculline on the milk ejection reflex in the anaesthetized rat. J. Physiol. 483, 211–224.10.1113/jphysiol.1995.sp020579Search in Google Scholar PubMed PubMed Central

Wang, J.W., Lundeberg, T., and Yu, L.C. (2003). Antinociceptive role of oxytocin in the nucleus raphe magnus of rats, an involvement of mu-opioid receptor. Regul. Pept. 115, 153–159.10.1016/S0167-0115(03)00152-6Search in Google Scholar

Williams, J.R., Insel, T.R., Harbaugh, C.R., and Carter, C.S. (1994). Oxytocin administered centrally facilitates formation of a partner preference in female prairie voles (Microtus ochrogaster). J. Neuroendocrinol. 3, 247–250.10.1111/j.1365-2826.1994.tb00579.xSearch in Google Scholar PubMed

Wood, P.B. (2008). Role of central dopamine in pain and analgesia. Expert. Rev. Neurother. 8, 781–797.10.1586/14737175.8.5.781Search in Google Scholar PubMed

Wood, P.B., Schweinhardt, P., Jaeger, E., Dagher, A., Hakyemez, H., Rabiner, E.A., Bushnell, M.C., and Chizh, B.A. (2007). Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 25, 3576–3582.10.1111/j.1460-9568.2007.05623.xSearch in Google Scholar PubMed

Xiao, L., Priest, M.F., Nasenbeny, J., Lu, T., and Kozorovitskiy, Y. (2017). Biased oxytocinergic modulation of midbrain dopamine systems. Neuron 95, 1–17.10.1016/j.neuron.2017.06.003Search in Google Scholar PubMed PubMed Central

Yang, J., Yang, Y., Chen, J.M., Liu, W.Y., Wang, C.H., and Lin, B.C. (2007). Central oxytocin enhances antinociception in the rat. Peptides. 28, 1113–1119.10.1016/j.peptides.2007.03.003Search in Google Scholar PubMed

Young, L.J., Lim, M.M., Gingrich, B., and Insel, T.R. (2001). Cellular mechanisms of social attachment. Horm. Behav. 40, 133–138.10.1006/hbeh.2001.1691Search in Google Scholar PubMed

Young, K.A., Liu, Y., and Wang, Z. (2008). The neurobiology of social attachment: a comparative approach to behavioral, neuroanatomical, and neurochemical studies. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 148, 401–410.10.1016/j.cbpc.2008.02.004Search in Google Scholar PubMed PubMed Central

Received: 2017-08-12
Accepted: 2017-09-16
Published Online: 2017-12-09
Published in Print: 2018-06-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2017-0068/html
Scroll to top button