Home Recently emerging trends in thermal conductivity of polymer nanocomposites
Article
Licensed
Unlicensed Requires Authentication

Recently emerging trends in thermal conductivity of polymer nanocomposites

  • Christopher Igwe Idumah

    Christopher Igwe Idumah is currently a doctoral researcher in the Enhanced Polymer Engineering Group (EnPro), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, with interests in development and flame retardancy of polymer nanocomposites and hybrid bionanocomposites. He received his MSc from Manchester University, UK, in 2012. While in SPDC Nigeria, he was trained by the Robert Gordon University, Aberdeen, in 2001.

    and Azman Hassan

    Azman Hassan is a professor in the Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), and Head of the Enhanced Polymer Research Group (EnPro). He received his PhD from Loughborough University, UK, in 1997. His research interests include flame retardant polymers, cellulose nanowhiskers, PVC technology, graphene, polymer blends, natural fiber composites, nanocomposites, and toughened polymers.

    EMAIL logo
Published/Copyright: March 24, 2016
Become an author with De Gruyter Brill

Abstract

Due to escalating power densities in electronics, information, communication, energy storage, aerospace, and automobile technologies, heat dissipation has become immensely essential for the efficient performance and reliability of photonic, electronics, optoelectronics, and other devices in order to proactively prevent premature failure due to overheating. The functionalization and synergistic inclusion of thermally conducting nanoparticles such as carbon derivatives and metallic and ceramic fillers into polymer matrices have resulted in development of thermally conducting polymer nanocomposites. This has enlarged the scope of application of these materials in areas hitherto restricted due to poor thermal conductivity and, therefore, opened broad windows of opportunities for polymer nanocomposites as emerging alternative replacements for metal components in various applications where effective heat dissipation is compulsory for device performance. Thus, this paper critically discusses globally emerging technologies applied in the development of thermally conductive polymer nanocomposites for various industrial applications.


Corresponding author: Azman Hassan, Enhanced Polymer Engineering Group, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia, e-mail:

About the authors

Christopher Igwe Idumah

Christopher Igwe Idumah is currently a doctoral researcher in the Enhanced Polymer Engineering Group (EnPro), Faculty of Chemical Engineering, Universiti Teknologi Malaysia, with interests in development and flame retardancy of polymer nanocomposites and hybrid bionanocomposites. He received his MSc from Manchester University, UK, in 2012. While in SPDC Nigeria, he was trained by the Robert Gordon University, Aberdeen, in 2001.

Azman Hassan

Azman Hassan is a professor in the Faculty of Chemical Engineering, Universiti Teknologi Malaysia (UTM), and Head of the Enhanced Polymer Research Group (EnPro). He received his PhD from Loughborough University, UK, in 1997. His research interests include flame retardant polymers, cellulose nanowhiskers, PVC technology, graphene, polymer blends, natural fiber composites, nanocomposites, and toughened polymers.

Acknowledgments:

The authors would like to appreciate the authorities and management of Universiti Teknologi Malaysia for providing materials for this work.

References

Agrawal A, Satapathy A. Mathematical model for evaluating effective thermal conductivity of polymer composites with hybrid fillers. Int J Therm Sci 2015; 89: 203–209.10.1016/j.ijthermalsci.2014.11.006Search in Google Scholar

Ahn H, Eoh Y, Park S, Kim E. Thermal conductivity of polymer composites with oriented boron nitride. Thermochim Acta 2014; 590: 138–144.10.1016/j.tca.2014.06.029Search in Google Scholar

Ahn K, Kim K, Kim M, Kim J. Fabrication of silicon carbonitride-covered boron nitride/Nylon 6, 6 composite for enhanced thermal conductivity by melt process. Ceram Int 2015; 41: 2187–2195.10.1016/j.ceramint.2014.10.018Search in Google Scholar

Al-Khudary N, Cresson P, Wei W, Happy H, Lasri T. Inkjet printing technology for polymer thermal conductivity measurement by the three omega method. Polym Test 2014; 40: 187–195.10.1016/j.polymertesting.2014.09.008Search in Google Scholar

AlMaadeed MA, Labidi S, Krupa I, Karkri M. Effect of expanded graphite on the phase change materials of high density polyethylene/wax blends. Thermochim Acta 2015; 600: 35–44.10.1016/j.tca.2014.11.023Search in Google Scholar

Arduini-Schuster M, Manara J, Vo C. Experimental characterization and theoretical modeling of the infrared-optical properties and the thermal conductivity of foams. Int J Therm Sci 2015; 98: 156–164.10.1016/j.ijthermalsci.2015.07.015Search in Google Scholar

Bagchi B, Nomura S. On the effective thermal conductivity of carbon nanotube reinforced polymer composites. Compos Sci Technol 2006; 66: 1703–1712.10.1016/j.compscitech.2005.11.003Search in Google Scholar

Balandin A. Thermal properties of graphene and nanostructured carbon materials. Nat Mater 2011; 10: 569–581.10.1038/nmat3064Search in Google Scholar PubMed

Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN. Superior thermal conductivity of single-layer graphene. Nano Lett 2008; 8: 902–907.10.1021/nl0731872Search in Google Scholar PubMed

Bellan S, Gonzalez-Aguilar J, Romero M, Rahman M, Goswami D, Stefanakos E. Numerical investigation of PCM-based thermal energy storage system. Energy Procedia 2015; 69: 758–768.10.1016/j.egypro.2015.03.086Search in Google Scholar

Bittencourt C, Felten A, Ghijsen J, Pireaux JJ, Drube W, Erni R, Tendeloo GV. Decorating carbon nanotubes with nickel nanoparticles. Chem Phys Lett 2007; 436: 368–372.10.1016/j.cplett.2007.01.065Search in Google Scholar

Boden A, Boerner B, Kusch P, Firkowska I, Reich S. Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites. Nano Lett 2014; 14: 3640–3644.10.1021/nl501411gSearch in Google Scholar PubMed

Bonnet P, Sireude D, Garnier B, Chauvet O. Thermal properties and percolation in carbon nanotube-polymer composites. Appl Phys Lett 2007; 91: 201910.10.1063/1.2813625Search in Google Scholar

Botelho S, Bazylak A. Impact of polymer electrolyte membrane fuel cell microporous layer nano-scale features on thermal conductance. J Power Sources 2015; 280: 173–181.10.1016/j.jpowsour.2015.01.078Search in Google Scholar

Botelho S, Banerjee R, Bazylak A. A unit-cell approach for determining the effective thermal conductivity of the polymer electrolyte membrane fuel cell microporous layer. Int J Heat Mass Transf 2015; 89: 809–816.10.1016/j.ijheatmasstransfer.2015.05.116Search in Google Scholar

Bouchard J, Cayla A, Devaux E, Campagne C. Electrical and thermal conductivities of multiwalled carbon nanotubes-reinforced high performance polymer nanocomposites. Polym Test 2013; 32: 987–994.10.1016/j.compscitech.2013.07.017Search in Google Scholar

Boudenne A, Ibos L, Fois M, Géhin E, Majesté JC. Anomalous behavior of thermal conductivity and diffusivity in polymeric materials filled with metallic particles. J Mater Sci 2005; 40: 4163–4167.10.1007/s10853-005-3818-2Search in Google Scholar

Boudenne A, Mamunya Y, Levchenko V, Garnier B, Lebedev E. Improvement of thermal and electrical properties of Silicone-Ni composites using magnetic field. Eur Polym J 2015; 63: 11–19.10.1016/j.eurpolymj.2014.11.032Search in Google Scholar

Bui K, Grady B, Papavassiliou D. Heat transfer in high volume fraction CNT nanocomposites: effects of inter-nanotube thermal resistance. Chem Phys Lett 2011; 508: 248–251.10.1016/j.cplett.2011.04.005Search in Google Scholar

Bui K, Grady B, Saha M, Papavassiliou D. Effect of carbon nanotube persistence length on heat transfer in nanocomposites: a simulation approach. Appl Phys Lett 2013; 102: 203116.10.1063/1.4807769Search in Google Scholar

Burger N, Laachachi A, Mortazavi B, Ferriol M, Lutz M, Toniazzo V, Ruch D. Alignments and network of graphite fillers to improve thermal conductivity of epoxy-based composites. Int J Heat Mass Transf 2015; 89: 505–513.10.1016/j.ijheatmasstransfer.2015.05.065Search in Google Scholar

Burr G, Breitwisch M, Franceschini M, Garetto D, Gopalakrishnan K, Jackson B, Kurdi B, Lam C, Lastras L, Padilla A, Rajendran B, Raoux S, Shenoy RS. Phase change memory technology. J Vac Sci Technol 2010; 28: 223–262.10.1116/1.3301579Search in Google Scholar

Cao H, Xiang H, Gong X. Unexpected large thermal rectification in asymmetric grain boundary of graphene. Solid State Commun 2012; 152: 1807–1810.10.1016/j.ssc.2012.07.013Search in Google Scholar

Cao J, Zhao X, Zhao J, Zha J, Hu G, Dang Z. Improved thermal conductivity and flame retardancy in polystyrene/poly (vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl Mater Interfaces 2013; 5: 6915–6924.10.1021/am401703mSearch in Google Scholar PubMed

Causin V, Marega C, Marigo A, Ferrara G, Ferraro A. Morphological and structural characterization of polypropylene/conductive graphite nanocomposites. Eur Polym J 2006; 42: 3153–3161.10.1016/j.eurpolymj.2006.08.017Search in Google Scholar

Chang CW, Okawa D, Garcia H, Majumdar A, Zettl A. Breakdown of Fourier’s law in nanotube thermal conductors. Phys Rev Lett 2008; 101: 075903.10.1103/PhysRevLett.101.075903Search in Google Scholar PubMed

Che J, Cagin T, Goddard WA. Thermal conductivity of carbon nanotubes. Nanotechnology 2000; 11: 65–69.10.1088/0957-4484/11/2/305Search in Google Scholar

Chen T, Weng GJ, Liu WC. Effect of Kapitza contact and consideration of tube-end transport on the effective conductivity in nanotube-based composites. J Appl Phys 2005; 97: 104312/1–4.10.1063/1.1896094Search in Google Scholar

Chen L, Xie H, Li Y, Yu W. Applications of cationic gemini surfactant in preparing multi-walled carbon nanotube contained nanofluids. Colloid Surf A Physicochem Eng Asp 2008; 330: 176–179.10.1016/j.colsurfa.2008.07.047Search in Google Scholar

Chen L, Xie H, Yu W, Wang B, Wu Z. Thermal transport behaviors of suspended graphene sheets with different sizes. Int J Therm Sci 2015; 94: 221–227.10.1016/j.ijthermalsci.2015.03.010Search in Google Scholar

Chien S, Yang Y, Chen C. Influence of hydrogen functionalization on thermal conductivity of graphene: nonequilibrium molecular dynamics simulations. Appl Phys Lett 2011; 98: 033107.10.1063/1.3543622Search in Google Scholar

Chien S, Yang Y, Chen C. Influence of chemisorption on the thermal conductivity of graphene nanoribbons. Carbon 2012; 50: 421–428.10.1016/j.carbon.2011.08.056Search in Google Scholar

Chirtoc M, Horny N, Tavman I, Turgut A, Kökey I, Omastová M. Preparation and photothermal characterization of nanocomposites based on high density polyethylene filled with expanded and unexpanded graphite: particle size and shape effects. Int J Therm Sci 2012; 62: 1–6.10.1016/j.ijthermalsci.2012.02.015Search in Google Scholar

Chiu H, Sukachonmakul T, Wang C, Wattanakul K, Kuo M, Yu H. Effect of pyrolysis atmospheres on the morphology of polymer-derived silicon oxynitrocarbide ceramic films coated aluminum nitride surface and the thermal conductivity of silicone rubber composites. Appl Surf Sci 2014; 292: 319–327.10.1016/j.apsusc.2013.11.139Search in Google Scholar

Chiu H, Sukachonmakul T, Kuo M, Wang Y, Wattanakul K. Surface modification of aluminum nitride by polysilazane and its polymer-derived amorphous silicon oxycarbide ceramic for the enhancement of thermal conductivity in silicone rubber composite. Appl Surf Sci 2015; 292: 928–936.10.1016/j.apsusc.2013.12.081Search in Google Scholar

Choi W, Ooka R. Interpretation of disturbed data in thermal response tests using the infinite line source model and numerical parameter estimation method. Appl Energ 2015; 148: 476–488.10.1016/j.apenergy.2015.03.097Search in Google Scholar

Choi W, Ooka R. Effect of disturbance on thermal response test, part 2: numerical study of applicability and limitation of infinite line source model for interpretation under disturbance from outdoor environment. Renew Energ 2016; 85: 1090–1105.10.1016/j.renene.2015.07.049Search in Google Scholar

Choi S, Im H, Kim J. Flexible and high thermal conductivity thin films based on polymer: aminated multi-walled carbon nanotubes/micro-aluminum nitride hybrid composites. Compos Part A Appl Sci Manuf 2012a; 43: 1860–1868.10.1016/j.compositesa.2012.06.009Search in Google Scholar

Choi, Im H, Kim J. The thermal conductivity of embedded nano-aluminum nitride-doped multi-walled carbon nanotubes in epoxy composites containing micro-aluminum nitride particles. Nanotechnology 2012b; 23: 5303–5312.10.1088/0957-4484/23/6/065303Search in Google Scholar PubMed

Clancy TC, Gates TS. Modeling of interfacial modification effects on thermal conductivity of carbon nanotube composites. Polymer 2006; 47: 5990–5996.10.1016/j.polymer.2006.05.062Search in Google Scholar

Cola BA. Carbon nanotubes as high performance thermal interface materials. Electron Cool 2010; 16: 10–15.Search in Google Scholar

Cola BA, Xu J, Fisher TS. Contact mechanics and thermal conductance of carbon nanotube array interfaces. Int J Heat Mass Transf 2009; 52: 3490–3503.10.1016/j.ijheatmasstransfer.2009.03.011Search in Google Scholar

Cui W, Du F, Zhao J, Zhang W, Yang Y, Xie X, Mai Y. Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes. Carbon 2011; 49: 495–500.10.1016/j.carbon.2010.09.047Search in Google Scholar

Cui L, Feng Y, Tang J, Tan P, Zhang X. Heat conduction in coaxial nanocables of Au nanowire core and carbon nanotube shell: a molecular dynamics simulation. Int J Therm Sci 2016; 99: 64–70.10.1016/j.ijthermalsci.2015.08.004Search in Google Scholar

Dawson A, Rides M, Maxwell A, Cuenat A, Samano A. Scanning thermal microscopy techniques for polymeric thin films using temperature contrast mode to measure thermal diffusivity and a novel approach in conductivity contrast mode to the mapping of thermally conductive particles. Polym Test 2015; 41: 198–208.10.1016/j.polymertesting.2014.11.008Search in Google Scholar

Debelak B, Lafdi K. Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 2007; 45: 1727–1734.10.1016/j.carbon.2007.05.010Search in Google Scholar

Deng F, Zheng Q. Interaction models for effective thermal and electric conductivity of carbon nanotube composites. Acta Mech Sol Sin 2009; 22: 1–16.10.1016/S0894-9166(09)60085-9Search in Google Scholar

Deng F, Zheng QS, Wang LF. Effects of anisotropy, aspect ratio, and non-straightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl Phys Lett 2007; 90: 021914.10.1063/1.2430914Search in Google Scholar

Donadio D, Galli G. Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 2007; 99: 255–502.10.1103/PhysRevLett.99.255502Search in Google Scholar PubMed

Droval G, Feller JF, Salagnac P, Glouannec P. Conductive polymer composites with double percolated architecture of carbon nanoparticles and ceramic microparticles for high heat dissipation and sharp PTC switching. Smart Mater Struct 2008; 17: 025011/1–10.10.1088/0964-1726/17/2/025011Search in Google Scholar

Droval G, Feller JF, Salagnac P, Glouannec P. Rheological properties of conductive polymer composite (CPC) filled with double percolated network of carbon nanoparticles and boron nitride powder. e-Polymers 2009; 1: 023/1–17.10.1515/epoly.2009.9.1.261Search in Google Scholar

Duong HM, Papavassiliou DV, Mullen KJ, Maruyama S. Computational modeling of the thermal conductivity of single-walled carbon nanotube-polymer composites. Nanotechnology 2008; 19: 065702/1–8.10.1088/0957-4484/19/6/065702Search in Google Scholar PubMed

Eom Y, Choi K, Moon S, Park J, Lee J, Moon J. Characterization of a hybrid Cu paste as an isotropic conductive adhesive. ETRI J 2011; 33: 864–870.10.4218/etrij.11.0110.0520Search in Google Scholar

Erikson W, Cooper M, Hobbs M, Kaneshige M, Oliver M, Snedigar S. Determination of thermal diffusivity, conductivity, and energy release from the internal temperature profiles of energetic materials. Int J Heat Mass Transf 2014; 79: 676–688.10.1016/j.ijheatmasstransfer.2014.08.059Search in Google Scholar

Fang X, Fan L, Ding Q, Wang X, Yao X, Hou J, Yu Z, Cheng G, Hu Y, Cen K. Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets. Energ Fuel 2013; 27: 4041–4047.10.1021/ef400702aSearch in Google Scholar

Fang L, Wu W, Huang X, He J, Jiang P. Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Compos Sci Technol 2015; 107: 67–74.10.1016/j.compscitech.2014.12.009Search in Google Scholar

Farrington R, Rugh J. Impact of vehicle air-conditioning on fuel economy. Tailpipe emissions, and electric vehicle range. Washington, DC: Earth Technologies Forum, 31 October, 2000.Search in Google Scholar

Fischer JE. Carbon nanotubes: structure and properties. In: Gogotsi Y, editor. Carbon nanomaterials. NewYork: Taylor and Francis Group, 2006: 51–58.Search in Google Scholar

Foygel M, Morris RD, Anez D, French S, Sobolev VL. Theoretical and computational studies of carbon nanotube composites and suspensions: electrical and thermal conductivity. Phys Rev B 2005; 71: 104201/1–8.10.1103/PhysRevB.71.104201Search in Google Scholar

Fu Y, He ZX, Mo DC, Lu SS. Thermal conductivity enhancement of epoxy adhesive using graphene sheets as additives. Int J Therm Sci 2014; 86: 276–283.10.1016/j.ijthermalsci.2014.07.011Search in Google Scholar

Fujigaya T, Fukumaru T, Nakashima N. Evaluation of dispersion state and thermal conductivity measurement of carbon nanotubes/UV-curable resin nanocomposites. Synth Met 2009; 159: 827–830.10.1016/j.synthmet.2009.01.019Search in Google Scholar

Fukushima H, Drzal L, Rook B, Rich M. Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 2006; 85: 235–238.10.1007/s10973-005-7344-xSearch in Google Scholar

Ganguli S, Roy A, Anderson D. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 2008; 46: 806–817.10.1016/j.carbon.2008.02.008Search in Google Scholar

Gao B, Xu Z, Peng J, Kang K, Du H, Li J, Chiang S, Xu C, Hu N, Ning X. Experimental and theoretical studies of effective thermal conductivity of composites made of silicone rubber and Al2O3 particles. Thermochim Acta 2015; 614: 1–8.10.1016/j.tca.2015.06.005Search in Google Scholar

Ghose S, Watson KA, Working DC, Connell JW, Smith Jr JG, Sun YP. Thermal conductivity of ethylene vinyl acetate copolymer/nanofiller blends. Compos Sci Technol 2008; 68: 1843–1853.10.1016/j.compscitech.2008.01.016Search in Google Scholar

Giang T, Kim J. Effect of backbone moiety in diglycidylether-terminated liquid crystalline epoxy on thermal conductivity of epoxy/alumina composite. J Ind Eng Chem 2015; 30: 77–84.10.1016/j.jiec.2015.05.004Search in Google Scholar

Gong F, Bui K, Papavassiliou D, Duong H. Thermal transport phenomena and limitations in heterogeneous polymer composites containing carbon nanotubes and inorganic nanoparticles. Carbon 2014; 78: 305–316.10.1016/j.carbon.2014.07.007Search in Google Scholar

Gonnet P, Liang Z, Choi ES, Kadambala RS, Zhang C, Brooks JS, Wang B, Kramer L. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites. Curr Appl Phys 2006; 6: 119–122.10.1016/j.cap.2005.01.053Search in Google Scholar

Greig D, Hardy ND. The thermal conductivity of semicrystalline polymers at very low temperatures. Journal de Physique Colloques 1981; 42(C6): 69–71.10.1051/jphyscol:1981621Search in Google Scholar

Gu J, Zhang Q, Dang J, Zhang J, Yang Z. Thermal conductivity and mechanical properties of aluminum nitride filled linear low-density polyethylene composites. Polym Eng Sci 2009; 49: 1030–1034.10.1002/pen.21336Search in Google Scholar

Gu J, Yang X, Lv Z, Li N, Liang C, Zhang Q. Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int J Heat Mass Transf 2016; 92: 15–22.10.1016/j.ijheatmasstransfer.2015.08.081Search in Google Scholar

Gulotty R, Castellino M, Jagdale P, Tagliaferro, Balandin AA. Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 2013; 7: 5114–5121.10.1021/nn400726gSearch in Google Scholar PubMed

Gunawardana K, Mullen K, Hu J, Chen Y, Ruan X. Tunable thermal transport and thermal rectification in strained graphene nanoribbons. Phys Rev B 2012; 85: 245417.10.1103/PhysRevB.85.245417Search in Google Scholar

Gupta S, Siva V, Krishnan, Sreeprasad T, Singh P, Pradeep T, Das S. Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 2011; 110: 4302–4307.Search in Google Scholar

Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 2010; 36: 914–944.10.1016/j.progpolymsci.2010.11.004Search in Google Scholar

Han S, Chung D. Increasing the through-thickness thermal conductivity of carbon fiber polymer-matrix composite by curing pressure increase and filler incorporation. Compos Sci Technol 2011; 71: 1944–1952.10.1016/j.compscitech.2011.09.011Search in Google Scholar

Harish S, Orejon D, Takata Y, Kohno M. Thermal conductivity enhancement of lauric acid phase change nanocomposite in solid and liquid state with single-walled carbon nanohorn inclusions. Thermochim Acta 2015; 600: 1–6.10.1016/j.tca.2014.12.004Search in Google Scholar

Hone J, Llaguno MC, Nemes NM, Johnson AT, Fischer JE, Walters DA, Casavant MJ, Schmidt J, Smalley RE. Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films. Appl Phys Lett 2000; 77: 666–668.10.1063/1.127079Search in Google Scholar

Hong WT, Tai NH. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes. Diam Relat Mater 2008; 17: 1577–1581.10.1016/j.diamond.2008.03.037Search in Google Scholar

Hong H, Wright B, Wensel J, Jin S, Ye XR, Roy W. Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube. Synth Met 2007; 157: 437–440.10.1016/j.synthmet.2007.05.009Search in Google Scholar

Horibe A, Jang H, Haruki N, Sano Y, Kanbara H, Takahashi K. Melting and solidification heat transfer characteristics of phase change material in a latent heat storage vessel: effect of perforated partition plate. Int J Heat Mass Transf 2015; 82: 259–266.10.1016/j.ijheatmasstransfer.2014.11.050Search in Google Scholar

Hou G, Cheng B, Ding F, Yao M, Hu P, Yuan F. Synthesis of uniform a-Si 3 N 4 nanospheres by RF induction thermal plasma and their application in high thermal conductive nanocomposites. ACS Appl Mater Interfaces 2015; 7: 2873–2881.10.1021/am5081887Search in Google Scholar PubMed

Hu G, Cao B. Thermal resistance between crossed carbon nanotubes: molecular dynamics simulations and analytical modeling. J Appl Phys 2013; 114: 224–308.10.1063/1.4842896Search in Google Scholar

Hu M, Yu D, Wei J. Thermal conductivity determination of small polymer samples by differential scanning calorimetry. Polym Test 2007; 26: 333–337.10.1016/j.polymertesting.2006.11.003Search in Google Scholar

Hu J, Ruan X, Chen P. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 2009; 9: 2730–2735.10.1021/nl901231sSearch in Google Scholar PubMed

Huang H, Liu C, Wu Y, Fan S. Aligned carbon nanotube composite films for thermal management. Adv Mater 2005; 17: 1652–1656.10.1002/adma.200500467Search in Google Scholar

Hung M, Choi O, Ju Y, Hahn H. Heat conduction in graphite-nanoplatelet-reinforced polymer nanocomposites. Appl Phys Lett 2006; 89: 023117.10.1063/1.2221874Search in Google Scholar

Huang XY, Jiang PK, Tanaka T. A review of dielectric polymer composites with high thermal conductivity. IEEE Electr Insul M 2011; 27: 8–16.10.1109/MEI.2011.5954064Search in Google Scholar

Huang XY, Zhi CY, Jiang PK. Toward effective synergetic effects from graphene nanoplatelets and carbon nanotubes on thermal conductivity of ultrahigh volume fraction nanocarbon epoxy composites. J Phys Chem C 2012a; 116: 23812–23820.10.1021/jp308556rSearch in Google Scholar

Huang X, Iizuka T, Jiang P, Ohki Y, Tanaka T. Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites. J Phys Chem C 2012b; 116: 13629–13639.10.1021/jp3026545Search in Google Scholar

Idumah CI, Hassan A. Emerging trends in flame retardancy of biofibers, biopolymers, biocomposites, and bionanocomposites. Rev Chem Eng 2015; 32: 115–148.10.1515/revce-2015-0017Search in Google Scholar

Idumah CI, Hassan A. Emerging trends in graphene carbon based polymer nanocomposites and applications. Rev Chem Eng 2016a; 32: 223–264.10.1515/revce-2015-0038Search in Google Scholar

Idumah CI, Hassan A. Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites. J Polym Eng 2016b; DOI 10.1515/polyeng-2015-0445.Search in Google Scholar

Idumah CI, Hassan A. Characterization and preparation of conductive exfoliated graphene nanoplatelets kenaf fibre hybrid polypropylene composites. Synthetic Met 2016c; 212: 91–104.10.1016/j.synthmet.2015.12.011Search in Google Scholar

Idumah CI, Hassan A. Emerging trends in eco-compliant, synergistic, and hybrid assembling of multifunctional polymeric bionanocomposites. Rev Chem Eng 2016d; 32: 305–361.10.1515/revce-2015-0046Search in Google Scholar

Idumah CI, Hassan A, Affam AC. A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng 2015; 31: 149–177.10.1515/revce-2014-0038Search in Google Scholar

Im H, Kim J. The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly (dimethylsiloxane) composites. Carbon 2011; 49: 3503–3511.10.1016/j.carbon.2011.04.049Search in Google Scholar

Im H, Kim J. Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite. Carbon 2012; 50: 5429–5440.10.1016/j.carbon.2012.07.029Search in Google Scholar

Ishida H, Rimdusit S. Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 1998; 320: 177–186.10.1016/S0040-6031(98)00463-8Search in Google Scholar

Jana P, Fierro V, Pizzi A, Celzard A. Thermal conductivity improvement of composite carbon foams based on tannin based disordered carbon matrix and graphite fillers. Mater Des 2015; 83: 635–643.10.1016/j.matdes.2015.06.057Search in Google Scholar

Jeyasingh R, Fong S, Lee J, Li Z, Chang K, Mantegazza D, Asheghi M, Goodson K, Wong H. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase. Nano Letters 2014; 14: 3419–3426.10.1021/nl500940zSearch in Google Scholar PubMed

Jiang J. Strain engineering for thermal conductivity of single-walled carbon nanotube forests. Carbon 2015; 81: 688–693.10.1016/j.carbon.2014.10.006Search in Google Scholar

Jo J, Saha P, Kim N, Ho C, Kim J. Development of nanocomposite with epoxidized natural rubber and functionalized multiwalled carbon nanotubes for enhanced thermal conductivity and gas barrier property. Mater Des 2015; 83: 777–785.10.1016/j.matdes.2015.06.045Search in Google Scholar

Johnson VH. Heat-generated cooling opportunities in vehicles, SAE Technical Paper, Society of Automotive Engineers, 2002.10.4271/2002-01-1969Search in Google Scholar

Jouni M, Boudenne A, Boiteux G, Massardier V, Garnier B. Significant enhancement of electrical and thermal conductivities of polyethylene carbon nanotube composites by the addition of a low amount of silver nanoparticles. Polym Adv Technol 2014; 25: 1054–1059.10.1002/pat.3350Search in Google Scholar

Ju S, Li ZY. Theory of thermal conductance in carbon nanotube composites. Phys Lett A 2006; 353: 194–197.10.1016/j.physleta.2005.11.086Search in Google Scholar

Jung H, Yu S, Bae N, Cho S, Kim R, Cho S, Hwang I, Jeong B, Ryu J, Hwang J, Hong S, Koo C, Park C. High through-plane thermal conduction of graphene nanoflake filled polymer composites melt-processed in an L-shape kinked tube. ACS Appl Mater Interfaces 2015; 7: 15256–15262.10.1021/acsami.5b02681Search in Google Scholar PubMed

Kalaitzidou K, Fukushima H, Drzal LT. Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Compos Part A Appl Sci Manuf 2007; 38: 1675–1682.10.1016/j.compositesa.2007.02.003Search in Google Scholar

Kamseu E, Kamseu Z, Ali B, Zekeng S, Melo U, Rossignol S, Leonelli C. Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: relation microstructure and effective thermal conductivity. Energ Buildings 2015; 88: 45–56.10.1016/j.enbuild.2014.11.066Search in Google Scholar

Karapekl A, Sari A, Kaygusuz K. Thermal characteristics of paraffin/expanded perlite composite for latent heat thermal energy storage. Energ Source Part A 2009; 31: 814–823.10.1080/15567030701752768Search in Google Scholar

Kelly BT. Physics of graphite. Barking (UK): Applied Science Publishers, 1981.Search in Google Scholar

Kim Y, Kamio S, Tajiri A, Hayashi T, Song S, Endo M. Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl Phys Lett 2007; 90: 093125.10.1063/1.2710778Search in Google Scholar

Kim IT, Tannenbaum A, Tannenbaum R. Anisotropic conductivity of magnetic carbon nanotubes embedded in epoxy matrices. Carbon 2011; 49: 54–61.10.1016/j.carbon.2010.08.041Search in Google Scholar PubMed PubMed Central

Kim H, Jang J, Yu J, Kim S. Thermal conductivity of polymer composites based on the length of multi-walled carbon nanotubes. Compos Part B-Eng 2015a; 79: 505–512.10.1016/j.compositesb.2015.05.012Search in Google Scholar

Kim S, Noh Y, Yu J. Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers. Compos Part A Appl Sci Manuf 2015b; 69: 219–225.10.1016/j.compositesa.2014.11.018Search in Google Scholar

King JA, Johnson BA, Via MD, Ciarkowski CJ. Effects of carbon fillers in thermally conductive polypropylene based resins. Polym Compos 2010a; 31: 497–506.10.1002/pc.20830Search in Google Scholar

King JA, Gaxiola DL, Johnson BA, Keith JM. Thermal conductivity of carbon-filled polypropylene-based resins. J Compos Mater 2010b; 44: 839–855.10.1177/0021998309347578Search in Google Scholar

Kline DE. Thermal conductivity studies of polymers. J Polym Sci 1961; 50: 441–450.10.1002/pol.1961.1205015413Search in Google Scholar

Koo J, Kang Y, Kleinstreuer C. A nonlinear effective thermal conductivity model for carbon nanotube and nanofiber suspensions. Nanotechnology 2008; 19: 375705/1–7.10.1088/0957-4484/19/37/375705Search in Google Scholar PubMed

Krupa I, Nógellová Z, Špitalsk Z, Janigová I, Boh B, Sumiga B, Kleinová A, Karkri M, AlMaadeed M. Phase change materials based on high-density polyethylene filled with microencapsulated paraffin wax. Energy Convers Manage 2014; 88: 400–409.10.1016/j.enconman.2014.06.061Search in Google Scholar

Kumar S, Alam MA, Murthy JY. Effect of percolation on thermal transport in nanotube composites. Appl Phys Lett 2007; 90: 104105.10.1063/1.2712428Search in Google Scholar

Kundalwal S, Ray M. Estimation of thermal conductivities of a novel fuzzy fiber reinforced composite. Int J Therm Sci 2014; 76: 90–100.10.1016/j.ijthermalsci.2013.08.015Search in Google Scholar

Lafdi K, Mesalhy O, Elgafy A. Graphite foams infiltrated with phase change materials as alternative materials for space and terrestrial thermal energy storage applications. Carbon 2008; 46: 159–168.10.1016/j.carbon.2007.11.003Search in Google Scholar

Lagüela S, Bison P, Peron F, Romagnoni P. Thermal conductivity measurements on wood materials with transient plane source technique. Thermochim Acta 2015; 600: 45–51.10.1016/j.tca.2014.11.021Search in Google Scholar

Lee H, Paik K. Vertically aligned nickel nanowire/epoxy composite for electrical and thermal conducting material. In: 2012 IEEE 62nd Electronic. Components and Technology Conference (ECTC); 2012: 2087–2090.10.1109/ECTC.2012.6249129Search in Google Scholar

Lee W, Yu J. Comparative study of thermally conductive fillers in underfill for the electronic components. Diam Relat Mater 2005; 14: 1647–1653.10.1016/j.diamond.2005.05.008Search in Google Scholar

Lee J, Asheghi M, Goodson K. Impact of thermoelectric phenomena on phase-change memory performance metrics and scaling. Nanotechnology 2012a; 23: 205201.10.1088/0957-4484/23/20/205201Search in Google Scholar PubMed

Lee J, Kodama T, Won Y, Asheghi M, Goodson K. Phase purity and the thermoelectric properties of Ge2Sb2Te5 films down to 25 nm thickness. J Appl Phys 2012b; 112: 014902.10.1063/1.4731252Search in Google Scholar

Lee J, Stein I, Devoe M, Lewis D, Lachman N, Kessler S, Buschhorn S, Wardle B. Impact of carbon nanotube length on electric transport in aligned carbon nanotube networks. Appl Phys Lett 2015; 106: 053110.10.1063/1.4907608Search in Google Scholar

Lefrant S, Baibarac M, Baltog I, Mevellec JY, Godon C, Chauvet O. Functionalization of single-walled carbon nanotubes with conducting polymers evidenced by Raman and FTIR spectroscopy. Diam Relat Mater 2005; 14: 867–872.10.1016/j.diamond.2004.11.035Search in Google Scholar

Leung S, Khan M, Chan E, Naguib H. Analytical modeling and characterization of heat transfer in thermally conductive polymer composites filled with spherical particulates. Compos B Eng 2013; 45: 43–49.10.1016/j.compositesb.2012.10.001Search in Google Scholar

Li D, McGaughey A. Phonon dynamics at surfaces and interfaces and its implication in energy transport in nanostructured materials. Nanos Micros Therm 2015; 19: 166–182.10.1080/15567265.2015.1035199Search in Google Scholar

Li Z, Lee J, Reifenberg J, Asheghi M, Jeyasingh R, Wong H, Goodson K. Grain boundaries, phase impurities, and anisotropic thermal conduction in phase-change memory. IEEE Electr Device L 2011; 32: 961–963.10.1109/LED.2011.2150193Search in Google Scholar

Li N, Ren J, Wang L, Zhang G, Hanggi P, Li B. Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Rev Mod Phys 2012a; 84: 1045.10.1103/RevModPhys.84.1045Search in Google Scholar

Li Z, Tan S, Bozorg-Grayeli E, Kodama T, Asheghi M, Delgado G, Panzer M, Pokrovsky A, Wack D, Goodson K. Phonon dominated heat conduction normal to Mo/Si multilayers with period below 10 nm. Nano Letters 2012b; 12: 3121–3126.10.1021/nl300996rSearch in Google Scholar PubMed

Liao SH, Yen CY, Weng CC, Lin YF, Ma CM, Yang CH, Tsai MC, Yen MY, Hsiao MC, Lee SJ, Xie XF, Hsiao YH. Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 2008; 185: 1225–1232.10.1016/j.jpowsour.2008.06.097Search in Google Scholar

Liem H, Choy H. Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers. Solid State Commun 2013; 163: 41–45.10.1016/j.ssc.2013.03.024Search in Google Scholar

Lin C, Chung D. Graphite nanoplatelet pastes vs. carbon black pastes as thermal interface materials. Carbon 2009; 47: 295–305.10.1016/j.carbon.2008.10.011Search in Google Scholar

Lin W, Moon KS, Wong CP. A combined process of in situ functionalization and microwave treatment to achieve ultrasmall thermal expansion of aligned carbon nanotube-polymer nanocomposites: toward applications as thermal interface materials. Adv Mater 2009; 21: 2421–2424.10.1002/adma.200803548Search in Google Scholar

Lin Z, Mcnamara A, Liu Y, Moon K, Wong C. Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation. Compos Sci Technol 2014; 90: 123–128.10.1016/j.compscitech.2013.10.018Search in Google Scholar

Lisunova MO, Lebovka NI, Melezhyk OV, Boiko YP. Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. J Colloid Interface Sci 2006; 299: 740–746.10.1016/j.jcis.2006.03.012Search in Google Scholar PubMed

Liu Z, Guo Q, Shi J, Zhai G, Liu L. Graphite blocks with high thermal conductivity derived from natural graphite flake. Carbon 2008; 46: 414–421.10.1016/j.carbon.2007.11.050Search in Google Scholar

Ma PC, Tang BZ, Kim JK. Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 2008; 46: 1497–1505.10.1016/j.carbon.2008.06.048Search in Google Scholar

Ma F, Zhang P, Xia Z, Li M. How to enhance the effective thermal conductivity of composite material based on optimization method? Energy 2015; 87: 400–441.10.1016/j.energy.2015.05.006Search in Google Scholar

Malekpour H, Chang KH, Chen JC, Lu CY, Nika DL, Novoselov KS, Balandin AA. Thermal conductivity of graphene laminate. Nano Lett 2014; 14: 5155–5161.10.1021/nl501996vSearch in Google Scholar PubMed

Marconnet A, Yamamoto N, Panzer M, Wardle B, Goodson K. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 2011; 5: 4818–4825.10.1021/nn200847uSearch in Google Scholar PubMed

Marconnet A, Ashegh M, Goodson K. From the Casimir limit to phononic crystals: 20 Years of phonon transport studies using silicon-on-insulator technology. J Heat Transf 2013a; 135: 061601.10.1115/1.4023577Search in Google Scholar

Marconnet A, Panzer M, Goodson K. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials. Rev Mod Phys 2013b; 85: 1295–1326.10.1103/RevModPhys.85.1295Search in Google Scholar

Medina-Esquivel RA, Zambrano-Arjona MA, Mendez-Gamboa JA, Yanez-Limon JM, Ordonez-Miranda J, Alvarado-Gil JJ. Thermal characterization of composites made up of magnetically aligned carbonyl iron particles in a polyester resin matrix. J Appl Phys 2012; 111: 054906.10.1063/1.3691592Search in Google Scholar

Mikdam A, Makradi A, Ahzi S, Garmestani H, Li DS, Remond Y. Statistical continuum theory for the effective conductivity of fiber filled polymer composites: effect of orientation distribution and aspect ratio. Compos Sci Technol 2010; 70: 510–517.10.1016/j.compscitech.2009.12.002Search in Google Scholar

Miranda J, Yang R. Effect of a metallic coating on the thermal conductivity of carbon nanofiber-dielectric matrix composites. Compos Sci Technol 2015; 109: 18–24.10.1016/j.compscitech.2015.01.010Search in Google Scholar

Mortazavi B, Hassouna F, Laachachi A, Rajabpour A, Ahzi S, Chapron D, Toniazzo V, Ruch D. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochim Acta 2013; 552: 106–113.10.1016/j.tca.2012.11.017Search in Google Scholar

Mu Q, Feng S, Diao G. Thermal conductivity of silicone rubber filled with ZnO. Polym Compos 2007; 28: 125–130.10.1002/pc.20276Search in Google Scholar

Muratov D, Kuznetsov D, Inykh I, Burmistrov I, Mazov I. Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Compos Sci Technol 2015; 111: 40–43.10.1016/j.compscitech.2015.03.003Search in Google Scholar

Nakamura Y, Isogawa M, Ueda T, Yamasaka S, Matsui H, Kikkawa J, Ikeuchi S, Oyake T, Hori T, Shiomi J, Sakai A. Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material. Nano Energy 2015; 12: 845–851.10.1016/j.nanoen.2014.11.029Search in Google Scholar

Nam YW, Kim WN, Cho YH, Chae DW, Kim GH, Hong SP, Hwang SS, Hong SM. Morphology and physical properties of binary blend based on PVDF and multi-walled carbon nanotube. Macromol Symp 2007; 249–250: 478–484.10.1002/masy.200750423Search in Google Scholar

Nan C, Shi Z, Lin L. A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 2003; 375: 666–669.10.1016/S0009-2614(03)00956-4Search in Google Scholar

Nan C, Liu G, Lin Y. Interface effect on thermal conductivity of carbon nanotube composites. Appl Phys Lett 2004; 85: 35–49.10.1063/1.1808874Search in Google Scholar

Nanda J, Maranville C, Bollin S, Sawall D, Ohtani H, Remillard J, Ginder J. Thermal conductivity of single-wall carbon nanotube dispersions: role of interfacial effects. J Phys Chem C 2008; 112: 3–5.10.1021/jp711164hSearch in Google Scholar

Narh KW, Jallo L, Rhee KY. The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polym Compos 2008; 29: 809–817.10.1002/pc.20567Search in Google Scholar

Ngo I, Byon C. A generalized correlation for predicting the thermal conductivity of composites with heterogeneous nanofillers. Int J Heat Mass Transf 2015; 90: 894–899.10.1016/j.ijheatmasstransfer.2015.06.069Search in Google Scholar

Noh Y, Kim S. The synergistic enhancement of the thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets. Polym Test 2015; 45: 132–138.10.1016/j.polymertesting.2015.06.003Search in Google Scholar

Nomura T, Tabuchi K, Zhu C, Sheng N, Wang S, Akiyama T. High thermal conductivity phase change composite with percolating carbon fiber network. Appl Energ 2015; 154: 678–685.10.1016/j.apenergy.2015.05.042Search in Google Scholar

Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S, Grigorieva V, Firsov A. Electric field effect in atomically thin carbon films. Science 2004; 306: 666–669.10.1126/science.1102896Search in Google Scholar PubMed

Ohashi M, Kawakami S, Yokogawa Y. Spherical aluminum nitride fillers for heat-conducting plasticpackages. J Am Ceram Soc 2005; 88: 2615–2618.10.1111/j.1551-2916.2005.00456.xSearch in Google Scholar

Onuma A, Kawaji J, Suzuki S, Morishima M, Takamori Y, Asano N, Tadanaga K. Effect of the addition of hydrated titanium oxide on proton conductivity aromatic polymer electrolyte membrane. Solid State Ionics 2015; 277: 72–76.10.1016/j.ssi.2015.03.038Search in Google Scholar

Pal H, Sharma V. Thermal conductivity of carbon nanotube-silver composite. Trans Nonferrous Met Soc China 2015; 25: 154–161.10.1016/S1003-6326(15)63590-7Search in Google Scholar

Panzer M, Duong H, Okawa J, Shiomi J, Wardle B, Maruyama S, Goodson K. Temperature-dependent phonon conduction and nanotube engagement in metalized single wall carbon nanotube films. Nano Lett 2010; 10: 2395–2400.10.1021/nl100443xSearch in Google Scholar

Park C, Ounaies Z, Watson KA, Crooks Jr REJM, Lowther SE, Connell JW, Siochi EJ, Harrison JS, St Clair TL. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 2002; 364: 303–308.10.1016/S0009-2614(02)01326-XSearch in Google Scholar

Park J, An Y, Shin K, Han J, Lee C. Enhanced thermal conductivity of epoxy/three dimensional carbon hybrid filler composites for effective heat dissipation. RSC Adv 2015; 5: 46989.10.1039/C5RA05817ASearch in Google Scholar

Pei Q, Sha Z, Zhang Y. A theoretical analysis of the thermal conductivity of hydrogenated graphene. Carbon 2011; 49: 4752–4759.10.1016/j.carbon.2011.06.083Search in Google Scholar

Pei QX, Zhang Y, Sha Z, Shenoy V. Carbon isotope doping induced interfacial thermal resistance and thermal rectification in graphene. Appl Phys Lett 2012; 100: 101901.10.1063/1.3692173Search in Google Scholar

Pierson HO. Handbook of carbon, graphite, diamond and fullerences: properties, processing and applications. New Jersey: Noyes Publications, 1993.Search in Google Scholar

Pradhan NR, Duan H, Liang J, Iannacchione GS. The specific heat and effective thermal conductivity of composites containing single wall and multi-wall carbon nanotubes. Nanotechnology 2009; 20: 245705/1–7.10.1088/0957-4484/20/24/245705Search in Google Scholar PubMed

Prasher R. Thermal interface materials: historical perspective, status, and future directions. Proc IEEE 2006; 94: 1571–1586.10.1109/JPROC.2006.879796Search in Google Scholar

Putnam S, Cahill D, Ash B, Schadler L. High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces. J Appl Phys 2003; 94: 6785–6788.10.1063/1.1619202Search in Google Scholar

Qiu L, Zheng X, Yue P, Zhu J, Tang D, Dong Y, Peng Y. Adaptable thermal conductivity characterization of microporous membranes based on freestanding sensor-based 3u technique. Int J Therm Sci 2015; 89: 185–192.10.1016/j.ijthermalsci.2014.11.005Search in Google Scholar

Qu T, Tomar V. An analysis of the effects of temperature and structural arrangements on the thermal conductivity and thermal diffusivity of tropocollagen-hydroxyapatite interfaces. Mater Sci Eng C 2014; 38: 28–38.10.1016/j.msec.2014.01.039Search in Google Scholar PubMed

Rajabpour A, Allaei S, Kowsary F. Interface thermal resistance and thermal rectification in hybrid graphene-graphane nanoribbons: a nonequilibrium molecular dynamics study. Appl Phys Lett 2011; 99: 051917.10.1063/1.3622480Search in Google Scholar

Raoux S, Jordan-Sweet J, Kellock A. Crystallization properties of ultrathin phase change films. J Appl Phys 2008; 103: 114310.10.1063/1.2938076Search in Google Scholar

Reddy S, Lal D, Misra A, Kumar P. Novel architecture for anomalous strengthening of a particulate filled polymer matrix composite. RSC Adv 2015; 5: 62477.10.1039/C5RA10714HSearch in Google Scholar

Regin A, Solanki S, Sainiet S. Heat transfer characteristics of thermal energy storage system using PCM capsules: a review. Renw Sust Energy Rev 2008; 12: 2438–2458.10.1016/j.rser.2007.06.009Search in Google Scholar

Regner K, Sellan D, Su Z, Amon C, McGaughey A, Malen J. Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nat Commun 2013; 4: 1640.10.1038/ncomms2630Search in Google Scholar PubMed

Regner K, Freedman J, Malen J. Advances in studying phonon mean free path dependent contributions to thermal conductivity. Nanosc Microsc Therm 2016; 19: 183–205.10.1080/15567265.2015.1045640Search in Google Scholar

Reifenberg P, Kencke D, Goodson K. The impact of thermal boundary resistance in phase-change memory devices. IEEE Electr Device L 2008; 29: 1112–1114.10.1109/LED.2008.2003012Search in Google Scholar

Ren L, Pashayi K, Fard H, Kotha S, Tasciuc T, Ozisik R. Engineering the coefficient of thermal expansion and thermal conductivity of polymers filled with high aspect ratio silica nanofibers. Compos Part B-Eng 2015; 58: 228–234.10.1016/j.compositesb.2013.10.049Search in Google Scholar

Renteria JD, Nika DL, Balandin AA. Graphene thermal properties: applications in thermal management and energy storage. Appl Sci 2014; 4: 525–547.10.3390/app4040525Search in Google Scholar

Renteria J, Legedza S, Salgado R, Balandin MP, Ramirez S, Saadah M, Kargar F, Balandin AA. Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater Des 2015a; 88: 214–221.10.1016/j.matdes.2015.08.135Search in Google Scholar

Renteria JD, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A, Cocemasov AI, Nika DL, Balandin AA. Anisotropy of thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater 2015b; 25: 4664.10.1002/adfm.201501429Search in Google Scholar

Rice J. Micron announces availability of phase change memory for mobile devices, 2012. Available at: http://investors.micron.com/releasedetail.cfm?ReleaseID=692563. Last accessed 24 April 2015.Search in Google Scholar

Sadeghifar H, Djilali N, Bahrami M.Thermal conductivity of a graphite bipolar plate (BPP) and its thermal contact resistance with fuel cell gas diffusion layers: effect of compression, PTFE, micro porous layer (MPL), BPP out-of-flatness and cyclic load. J Power Sources 2015; 273: 96–104.10.1016/j.jpowsour.2014.09.062Search in Google Scholar

Sahan N, Fois M, Paksoy H. Improving thermal conductivity phase change materials – a study of paraffin nanomagnetite composites. Sol Energ Mat Sol C 2015; 137: 61–67.10.1016/j.solmat.2015.01.027Search in Google Scholar

Sahoo S,Chitturi V, Agarwal R, Jiang J, Katiyar R. Thermal conductivity of free standing single wall carbon nanotube sheet by Raman spectroscopy. ACS Appl Mater Interfaces 2014; 6: 19958–19965.10.1021/am505484zSearch in Google Scholar PubMed

Saira P, Meschke M, Giazotto F, Savin A, Mottonen M, Pekola J. Heat transistor: demonstration of gate-controlled electronic refrigeration. Phys Rev Lett 2007; 99: 027203.10.1103/PhysRevLett.99.027203Search in Google Scholar PubMed

Samson E, Machiroutu SV, Chang JY, Santos I, Hermerding J, Dani A, Prasher R, Song DW. Interface material selection and a thermal management technique in second-generation platforms built on Intel Centrino mobile technology. Intel Technol J 2005; 9: 75–86.10.1535/itj.0901.06Search in Google Scholar

Santos W. Modified split column technique for the experimental determination of thermal conductivity of polymers. Polym Test 2015; 41: 40–43.10.1016/j.polymertesting.2014.10.009Search in Google Scholar

Santos W, Sousa J, Gregorio R. Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures. Compos Sci Technol 2013; 8: 177–184.10.1016/j.polymertesting.2013.05.007Search in Google Scholar

Sanusi O, Warzoha R, Fleischer A. Energy storage and solidification of paraffin phase change material embedded with graphite nanofibers. Int J Heat Mass Transf 2011; 54: 4429–4436.10.1016/j.ijheatmasstransfer.2011.04.046Search in Google Scholar

Sastry NNV, Bhunia A, Sundararajan T, Das SK. Predicting the effective thermal conductivity of carbon nanotube based nanofluids. Nanotechnology 2008; 19: 055704/1–8.10.1088/0957-4484/19/05/055704Search in Google Scholar PubMed

Sato K, Ijuin A, Hotta Y. Thermal conductivity enhancement of alumina/polyamide composites via interfacial modification. Ceram Int 2015; 41: 10314–10318.10.1016/j.ceramint.2015.04.088Search in Google Scholar

Schwamb T, Burg B, Schirmer N, Poulikakos D. An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 2009; 20: 5704–5709.10.1088/0957-4484/20/40/405704Search in Google Scholar PubMed

Shahil KM, Balandin AA. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 2012; 12: 861–867.10.1021/nl203906rSearch in Google Scholar PubMed

Shaikh S, Li L, Lafdi K, Huie J. Thermal conductivity of an aligned carbon nanotube array. Carbon 2007; 45: 2608–2613.10.1016/j.carbon.2007.08.011Search in Google Scholar

Shen J, Hu Y, Qin C, Li C, Ye M. Dispersion behavior of single-walled carbon nanotubes by grafting of amphiphilic block copolymer. Compos Part A Appl Sci Manuf 2008; 39: 1679–1683.10.1016/j.compositesa.2008.07.012Search in Google Scholar

Shenogin S, Xue L, Ozisik R, Keblinski P, Cahill DG. Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys 2004a; 95: 8136–8144.10.1063/1.1736328Search in Google Scholar

Shenogin S, Bodapati A, Xue L, Ozisik R, Keblinski P. Effect of chemical functionalization on thermal transport of carbon nanotube composites. Appl Phys Lett 2004b; 85: 2229–2231.10.1063/1.1794370Search in Google Scholar

Shtein M, Nadiv R, Buzaglo M, Kahil K, Regev O. Thermally conductive graphene-polymer composites: size, percolation, and synergy effect. Chem Mater 2015; 27: 2100–2106.10.1021/cm504550eSearch in Google Scholar

Sihn S, Ganguli S, Roy A, Qu L, Dai L. Enhancement of through-thickness thermal conductivity in adhesively bonded joints using aligned carbon nanotubes. Compos Sci Technol 2008; 68: 658–665.10.1002/9781118114063.ch9Search in Google Scholar

Singh IV, Tanaka M, Endo M. Effect of interface on the thermal conductivity of carbon nanotube composites. Int J Therm Sci 2007; 46: 842–847.10.1016/j.ijthermalsci.2006.11.003Search in Google Scholar

Song YS, Youn JR. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 2005; 43: 1378–1385.10.1016/j.carbon.2005.01.007Search in Google Scholar

Song YS, Youn JR. Evaluation of effective thermal conductivity for carbon nanotube/polymer composites using control volume finite element method. Carbon 2006; 44: 710–717.10.1016/j.carbon.2005.09.034Search in Google Scholar

Song W, Wang W, Veca L, Kong C, Cao M, Meziani P, Qian H, LeCroy G, Cao L, Sun Y. Polymer/carbon nanocomposites for enhanced thermal transport properties – carbon nanotubes versus graphene sheets as nanoscale fillers. J Mater Chem 2012; 22: 17133–17139.10.1039/c2jm32469eSearch in Google Scholar

Song J, Ma L, He Y, Yan H, Wu Z, Li W. Materials and product engineering modified graphite filled natural rubber composites with good thermal conductivity. Chinese J Chem Eng 2015; 23: 853–885.10.1016/j.cjche.2014.05.022Search in Google Scholar

Speight, JG. Lange’s handbook of chemistry, 16th ed., New York: McGraw-Hill, 2005: 2.794–2.797.Search in Google Scholar

Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS. Graphene-based composite materials. Nature 2006; 442: 282–286.10.1038/nature04969Search in Google Scholar PubMed

Starý Z, Krückel J, Schubert D. Conductivity of carbon black-based polymer composites under creep in the molten state. Polymer 2014; 55: 3980–3986.10.1016/j.polymer.2014.06.047Search in Google Scholar

Sun X, Lu X, Qiu L, Peng H. Orienting polydiacetylene using aligned carbon Nanotubes. J Mater Chem C 2015; 3: 2642.10.1039/C5TC00011DSearch in Google Scholar

T’Joen C, Park Y, Wang Q, Sommers A, Han X, Jacobi A. A review on polymer heat exchangers for HVAC&R applications. Int J Refrig 2009; 32: 763–779.10.1016/j.ijrefrig.2008.11.008Search in Google Scholar

Tadbir M, Kjeang E, Bahrami M. Thermal conductivity of microporous layers: analytical modeling and experimental validation. J Power Sources 2015; 296: 344–351.10.1016/j.jpowsour.2015.07.054Search in Google Scholar

Tanaka K, Ogata S, Kobayashi R, Tamura T, Kouno T. A molecular dynamics study on thermal conductivity of thin epoxy polymer sandwiched between alumina fillers in heat-dissipation composite material. Int J Heat Mass Transf 2015; 89: 714–734.10.1016/j.ijheatmasstransfer.2015.05.080Search in Google Scholar

Tao T, Yang Z, Delzeit L, Kashani A, Meyyappan M, Majumdar A. Dense vertically aligned multiwalled carbon nanotube arrays as thermal interface materials. IEEE T Compon Pack T 2007; 30: 92–100.10.1109/TCAPT.2007.892079Search in Google Scholar

Teng C, Ma C, Lu C, Yang S, Lee S, Hsiao M, Yen M, Chiou K, Lee T. Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 2011; 49: 5107–5116.10.1016/j.carbon.2011.06.095Search in Google Scholar

Trigui M, Karkri C, Boudaya Y, Ibos L, Magali F. Experimental investigation of a composite phase change material: thermal-energy storage and release. J Compos Mater 2014; 48: 49–62.10.1177/0021998312468185Search in Google Scholar

Tu H, Ye L. Thermal conductive PS/graphite composites. Polym Adv Technol 2009; 20: 21–27.10.1002/pat.1236Search in Google Scholar

Vandervorst P, Lei CH, Lin Y, Dupont O, Dalton AB, Sun YP, Keddie JL. The fine dispersion of functionalized carbon nanotubes in acrylic latex coatings. Prog Org Coat 2006; 57: 91–7.10.1016/j.porgcoat.2006.07.005Search in Google Scholar

Veca ML, Meziani MJ, Wang W, Wang X, Lu F, Zhang P, Lin Y, Fee R, Connell JW, Sun Y. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv Mater 2009; 21: 2088–2092.10.1002/adma.200802317Search in Google Scholar

Verdejo R, Barroso-Bujans F, Rodriguez-Perez M, Saja J, Lopez-Manchado M. Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 2008; 18: 2221–2226.10.1039/b718289aSearch in Google Scholar

Wang C, Qiu Z. Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters. Int J Heat Mass Transf 2015; 80: 319–328.10.1016/j.ijheatmasstransfer.2014.09.033Search in Google Scholar

Wang J, Carson JK, North MF, Cleland DJ. A new structural model of effective thermal conductivity for heterogeneous materials with continuous phases. Int J Heat Mass Transf 2008; 51: 2389–2397.10.1016/j.ijheatmasstransfer.2007.08.028Search in Google Scholar

Wang S, Liang R, Wang B, Zhang C. Dispersion and thermal conductivity of carbon nanotube composites. Carbon 2009; 47: 53–57.10.1016/j.carbon.2008.08.024Search in Google Scholar

Wang Y, Chen S, Ruan X. Tunable thermal rectification in graphene nanoribbons through defect engineering: a molecular dynamics study. Appl Phys Lett 2012; 100: 163101.10.1063/1.3703756Search in Google Scholar

Wang X, Cola B, Bougher T, Hodson S, Fisher T, Xu X. Photoacoustic technique for thermal conductivity and thermal interface measurements. Annual Review of Heat Transfer 2013; 16: 135–157.10.1615/AnnualRevHeatTransfer.v16.50Search in Google Scholar

Wang M, Chen H, Lin W, Li Z, Li Q, Chen M, Meng F, Xing Y, Yao Y, Wong C, Li Q. Crack-free and scalable transfer of carbon nanotube arrays into flexible and highly thermal conductive composite film. ACS Appl Mater Interfaces 2014a; 6: 539–544.10.1021/am404594mSearch in Google Scholar PubMed

Wang M, Galpaya D, Lai Z, Xu Y, Yan C. Surface functionalization on the thermal conductivity of graphene-polymer nanocomposites. International Journal of Smart and Nano Materials 2014b; 5: 123–132.10.1080/19475411.2014.904828Search in Google Scholar

Warzohaand R, Fleischer A. Effect of graphene layer thickness and mechanical compliance on interfacial heat flow and thermal conduction in solid-liquid phase change materials. ACS Appl Mater Interfaces 2014; 6: 12868–12876.10.1021/am502819qSearch in Google Scholar PubMed

Wirgin A. Influence of nuisance parameter uncertainty on the retrieval of the thermal conductivity of the macroscopically-homogeneous material within a cylinder from exterior temperature measurements. Appl Math Model 2015; 39: 5278–5298.10.1016/j.apm.2015.03.029Search in Google Scholar

Won Y, Lee J, Asheghi M, Kenny, Goodson K. Phase and thickness dependent modulus of Ge2Sb2Te5 films down to 25 nm thickness. Appl Phys Lett 2012; 100: 161905.10.1063/1.3699227Search in Google Scholar

Wong H, Raoux S, SangBum K, Jiale L, Reifenberg J, Rajendran B, Asheghi M, Goodson KE. Phase change memory. Proc IEEE 2010; 98: 2201–2227.10.1109/JPROC.2010.2070050Search in Google Scholar

Wu M, Hsu J. Thermal conductivity of carbon nanotubes with quantum correction via heat capacity. Nanotechnology 2009; 20: 145–401.10.1088/0957-4484/20/14/145401Search in Google Scholar PubMed

Wu W, Zhang G, Ke X, Yang X, Wang Z, Liu C. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management. Energ Convers Manage 2015; 101: 278–284.10.1016/j.enconman.2015.05.050Search in Google Scholar

Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater 2007; 6: 824–832.10.1038/nmat2009Search in Google Scholar PubMed

Wypych G. Handbook of fillers: physical properties of fillers and filled materials. Toronto: ChemTec Publishing, 2000.Search in Google Scholar

Xie H, Chen L. Adjustable thermal conductivity in carbon nanotube nanofluids. Phys Lett A 2009; 373: 1861–1864.10.1016/j.physleta.2009.03.037Search in Google Scholar

Xie XL, Mai YW, Zhou XP. Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 2005; 49: 89–112.10.1016/j.mser.2005.04.002Search in Google Scholar

Xu J, Fisher T. Enhancement of thermal interface materials with carbon nanotube arrays. Int J Heat Mass Transf 2006; 49: 1658–1666.10.1016/j.ijheatmasstransfer.2005.09.039Search in Google Scholar

Xu G, LaManna J, Clement J, Mench M. Direct measurement of through-plane thermal conductivity of partially saturated fuel cell diffusion media. J Power Sources 2014a; 256: 212–219.10.1016/j.jpowsour.2014.01.015Search in Google Scholar

Xu W, Zhang G, Li B. Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J Appl Phys 2014b; 116: 134303.10.1063/1.4896733Search in Google Scholar

Xue QZ. Model for the effective thermal conductivity of carbon nanotube composites. Nanotechnology 2006; 17: 1655–1660.10.1088/0957-4484/17/6/020Search in Google Scholar PubMed

Yan H, Tang Y, Long W, Li Y. Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. J Mater Sci 2014; 49: 5256–5264.10.1007/s10853-014-8198-zSearch in Google Scholar

Yan Z, Nika DL, Balandin AA. Thermal properties of graphene and few-layer graphene: applications in electronics. IET Circ. Devices Syst 2015; 9: 4–12.10.1049/iet-cds.2014.0093Search in Google Scholar

Yang N, Zhang G, Li B. Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 2009; 95: 033107.10.1063/1.3183587Search in Google Scholar

Yang J, Maragliano C, Schmidt A. Thermal property microscopy with frequency domain thermoreflectance. Rev Sci Instrum 2013; 84: 104904.10.1063/1.4824143Search in Google Scholar

Yang K, Yang Y, Tu C, Yeh C, Lee MT. A novel flat polymer heat pipe with thermal via for cooling electronic devices. Energ Convers Manage 2015; 100: 37–44.10.1016/j.enconman.2015.04.063Search in Google Scholar

Yao Y, Zeng X, Guo K, Sun R, Xu J. The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos Part A Appl Sci Manuf 2015; 69: 49–55.10.1016/j.compositesa.2014.10.027Search in Google Scholar

Yavari F, Fard H, Pashayi K, Rafiee M, Zamiri A, Yu Z, Ozisik R, Tasciuc T, Koratkar N. Enhanced thermal conductivity in a nanostructured phase change composite due to low concentration graphene additives. J Phys Chem C 2011; 115: 8753–8758.10.1021/jp200838sSearch in Google Scholar

Yim MJ, Paik KW. Review of electrically conductive adhesive technologies for electronic packaging, Electron Mater. Lett 2006; 2: 183–194.Search in Google Scholar

Yovanovich MM, Marotta E. Thermal spreading and contact resistances. In: Bejan A, Kraus AD, editors. Heat transfer handbook. Hoboken, New Jersey: Wiley, 2003, 261–395.Search in Google Scholar

Yu J, Cennini G. Improving thermal conductivity of polymer composites in embedded LEDs systems. Microelectr J 2014; 45: 1829–1833.10.1109/THERMINIC.2013.6675205Search in Google Scholar

Yu S, Hing P, Hu X. Thermal conductivity of polystyrene-aluminum nitride composite. Compos A Appl S 2002; 33: 289–292.10.1016/S1359-835X(01)00107-5Search in Google Scholar

Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC. Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 2007; 111: 7565–7569.10.1021/jp071761sSearch in Google Scholar

Yu A, Ramesh P, Sun X, Bekyarova E, Itkis M, Haddon R. Enhanced thermal conductivity in a hybrid graphite nanoplatelet – carbon nanotube filler for epoxy composites. Adv Mater 2008; 20: 4740–4744.10.1002/adma.200800401Search in Google Scholar

Yu H, Li L, Kido T, Xi G, Xu G, Guo F. Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material. J Appl Polym Sci 2012; 124: 669–677.10.1002/app.35016Search in Google Scholar

Yu J, Lacy T, Toghiani H, Pittman C. Micromechanically-based effective thermal conductivity estimates for polymer nanocomposites. Compos Part B-Eng 2013; 53: 267–273.10.2514/6.2012-1824Search in Google Scholar

Yu H, Nonn A, Heider D, Advani S. Model-based characterization and enhancement of the through-thickness thermal conductivity of polymer composites using infrared camera. Int J Therm Sci 2014a; 80: 118–125.10.1016/j.ijthermalsci.2014.02.002Search in Google Scholar

Yu J, Sundqvist B, Tonpheng B, Andersson O. Thermal conductivity of highly crystallized polyethylene. Polymer 2014b; 55: 195–200.10.1016/j.polymer.2013.12.001Search in Google Scholar

Yu S, Park C, Hong SM, Koo CM. Thermal conduction behaviors of chemically cross-linked high-density polyethylenes. Thermochim Acta 2014c; 583: 67–71.10.1016/j.tca.2014.03.018Search in Google Scholar

Yu H, Heider D, Advani S. Comparison of two finite element homogenization prediction approaches for through thickness thermal conductivity of particle embedded textile composite. Compos Struct 2015a; 127: 132–140.10.1016/j.compstruct.2015.07.037Search in Google Scholar

Yu H, Heider D, Advani S. Role of in-plane stacking sequence on transverse effective thermal conductivity of unidirectional composite laminates. Int J Heat Mass Transf 2015b; 85: 897–903.10.1016/j.ijheatmasstransfer.2015.02.003Search in Google Scholar

Yu W, Xie H, Yin L, Zhao J, Xia L, Chen L. Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int J Therm Sci 2015c; 91: 76–82.10.1016/j.ijthermalsci.2015.01.006Search in Google Scholar

Yuan K, Sun M, Wang Z, Tang D. Tunable thermal rectification in silicon-functionalized graphene nanoribbons by molecular dynamics simulation. Int J Therm Sci 2015; 98: 24–31.10.1016/j.ijthermalsci.2015.07.004Search in Google Scholar

Yung KC, Liem H. Enhanced thermal conductivity of boron nitride epoxy matrix composite through multi-modal particle size mixing. J Appl Polym Sci 2007; 106: 3587–3591.10.1002/app.27027Search in Google Scholar

Zamel N, Becker J, Wiegmann A. Estimating the thermal conductivity and diffusion coefficient of the microporous layer of polymer electrolyte membrane fuel cells. J Power Sources 2012; 207: 70–80.10.1016/j.jpowsour.2012.02.003Search in Google Scholar

Zeng J, Fu R, Agathopoulos S, Zhang S, Song X, He H. Numerical simulation of thermal conductivity of particle filled epoxy composites. J Electron Pack 2009; 131: 041006/1–7.10.1115/1.4000210Search in Google Scholar

Zeng J, Cao Z, Yang D, Sun L, Zhang L. Thermal conductivity enhancement of Ag nanowires on an organic phase change material. J Therm Anal Calorim 2010; 101: 385–389.10.1007/s10973-009-0472-ySearch in Google Scholar

Zhang Y, Hu X, Zhao J, Sheng K, Cannon W, Wang X, Fursin L. Rheology and thermal conductivity of diamond powder-filled liquid epoxy encapsulants for electronic packaging. IEEE Trans Compon Pack Technol 2009; 32: 716–723.10.1109/TCAPT.2009.2029701Search in Google Scholar

Zhong H, Lukes JR. Interfacial thermal resistance between carbon nanotubes: molecular dynamic simulations and analytical thermal modeling. Phys Rev B 2006; 74; 125403/1–10.10.1103/PhysRevB.74.125403Search in Google Scholar

Zhong W, Huang W, Deng X, Ai B. Thermal rectification in thickness asymmetric graphene nanoribbons. Appl Phys Lett 2011; 99: 193104.10.1063/1.3659474Search in Google Scholar

Zhou W. Effect of coupling agents on the thermal conductivity of aluminum particle/epoxy resin composites. J Mater Sci 2011; 46: 3883–3889.10.1007/s10853-011-5309-ySearch in Google Scholar

Zhou D, Zhao C. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials. Appl Therm Eng 2011; 31: 970–977.10.1016/j.applthermaleng.2010.11.022Search in Google Scholar

Zhou H, Zhang S, Yang M. The effect of heat-transfer passages on the effective thermal conductivity of high filler loading composite materials. Compos Sci Technol 2007a; 67: 1035–1040.10.1016/j.compscitech.2006.06.004Search in Google Scholar

Zhou W, Qi S, An Q, Zhao H, Liu N. Thermal conductivity of boron nitride reinforced polyethylene composites. Mater Res Bull 2007b; 42: 1863–1873.10.1016/j.materresbull.2006.11.047Search in Google Scholar

Zhou W, Lv S, Shi W. Preparation of micelle-encapsulated single-wall and multi-wall carbon nanotubes with amphiphilic hyperbranched polymer. Eur Polym J 2008; 44: 587–601.10.1016/j.eurpolymj.2008.01.020Search in Google Scholar

Zhu B, Wang J, Zheng H, Ma J, Wu J, Wu R. Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles. Compos Part B-Eng 2015; 69: 496–506.10.1016/j.compositesb.2014.10.035Search in Google Scholar

Received: 2016-1-18
Accepted: 2016-2-11
Published Online: 2016-3-24
Published in Print: 2016-8-1

©2016 by De Gruyter

Downloaded on 21.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revce-2016-0004/html
Scroll to top button