Abstract
The activated carbon (AC) was modified by molecules of quinoline (Q) and the new prepared AC impregnated by Q was characterized using Fourier transform infrared (FTIR), Raman spectroscopy, surface measurements, scanning electron microscope (SEM) and transmission electron microscope (TEM). These analytical techniques demonstrated a successful preparation of AC-Q as a new material which was examined for its sorption behavior for natural uranium. The sorption results by batch mode indicated the optimum conditions for 94.5% removal of U(VI) ions at pH 4.7 and an equilibrium contact time of 90 min. The analysis of sorption data revealed that the pseudo-second-order and Langmuir were more fitted than other estimated models. The sorption capacity of U(VI) was ∼63 mg/g onto AC-Q as adsorbent martial. The thermodynamic data demonstrated that the sorption of uranium is endothermic and spontaneous. New mechanism was supposed based on the role of the abrasive material quinoline on the mechanical removal of uranium from aqueous solution.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
-
Conflict of interest statement: The authors declare that they have no compete of interest.
References
1. Choi, J., Lee, J. Y., Yang, J.-S. Biosorption of heavy metals and uranium by starfish and Pseudomonas putida. J. Hazard. Mater. 2009, 161, 157; https://doi.org/10.1016/j.jhazmat.2008.03.065.Search in Google Scholar PubMed
2. IAEA, International Atomic Energy Agency. Uranium 2018: Resources, Production and Demand, a Joint Report by the Nuclear Energy Agency and the International Atomic Energy Agency; OECD: Paris, 2018, NEA No. 7413. http://www.OECD-nea.org/ndd/pubs/2018/7413-uranium-2018.pdf.Search in Google Scholar
3. Wang, J., Liu, J., Li, H., Chen, Y., Xiao, T., Song, G., Chen, D., Wang, C. Uranium and thorium leachability in contaminated stream sediments from a uranium minesite. J. Geochem. Explor. 2017, 176, 85; https://doi.org/10.1016/j.gexplo.2016.01.008.Search in Google Scholar
4. Raju, C. S. K., Subramanian, M. S. Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes. J. Hazard. Mater. 2007, 145, 315; https://doi.org/10.1016/j.jhazmat.2006.11.024.Search in Google Scholar PubMed
5. Attallah, M. F., El Afifi, E. M., Abdelsamad, A. A., Rizk, H. E., Massoud, A. Extraction chromatography and fractional precipitation procedures for production various zirconium grades for industrial and nuclear interest from Egyptian zircon ore. Arab J. Nucl. Sci. Appl. 2021, 54, 63; https://doi.org/10.21608/ajnsa.2021.48409.1413.Search in Google Scholar
6. Rao, T. P., Metilda, P., Gladis, J. M. Preconcentration techniques for uranium(VI) and thorium(IV) prior to analytical determination-an overview. Talanta 2006, 68, 1047; https://doi.org/10.1016/j.talanta.2005.07.021.Search in Google Scholar PubMed
7. Solgy, M., Taghizadeh, M., Ghoddocynejad, D. Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann. Nucl. Energy 2015, 75, 132; https://doi.org/10.1016/j.anucene.2014.08.009.Search in Google Scholar
8. Aziz, A., Jan, S., Waqar, F., Mohammad, B., Hakim, M., Yawar, W. Selective ion exchange separation of uranium from concomitant impurities in uranium materials and subsequent determination of the impurities by ICP-OES. J. Radioanal. Nucl. Chem. 2010, 284, 117; https://doi.org/10.1007/s10967-009-0444-5.Search in Google Scholar
9. Chou, C. L., Moffatt, J. D. A simple co-precipitation inductively coupled plasma mass spectrometric method for the determination of uranium in seawater. Fresenius J. Anal. Chem. 2000, 368, 59; https://doi.org/10.1007/s002160000518.Search in Google Scholar PubMed
10. Zhu, Z., Pranolo, Y., Cheng, C. Y. Uranium recovery from strong acidic solutions by solvent extraction with Cyanex 923 and a modifier. Miner. Eng. 2016, 89, 77; https://doi.org/10.1016/j.mineng.2016.01.016.Search in Google Scholar
11. Kim, G.-N., Kim, S.-S., Park, H.-M., Kim, W.-S., Park, U.-R., Moon, J.-K. Remediation of soil/concrete contaminated with uranium and radium by biological method. J. Radioanal. Nucl. Chem. 2013, 297, 71; https://doi.org/10.1007/s10967-012-2321-x.Search in Google Scholar
12. Kedari, C. S., Pandit, S. S., Gandhi, P. M. Separation by competitive transport of uranium(VI) and thorium(IV) nitrates across supported renewable liquid membrane containing trioctylphosphine oxide as metal carrier. J. Membr. Sci. 2013, 430, 188; https://doi.org/10.1016/j.memsci.2012.12.017.Search in Google Scholar
13. Shen, J., Schäfer, A. Removal of fluoride and uranium by nanofiltration and reverse osmosis: a review. Chemosphere 2014, 117, 679; https://doi.org/10.1016/j.chemosphere.2014.09.090.Search in Google Scholar PubMed
14. Ko, Y. G., Lim, J.-M., Choi, G.-S., Chung, K.-H., Kang, M.-J. Characterizations of electrodeposited uranium layer on stainless steel disc. Colloid. Surface. Physicochem. Eng. Aspect. 2015, 487, 121; https://doi.org/10.1016/j.colsurfa.2015.09.053.Search in Google Scholar
15. Drozdzak, J., Leermakers, M., Gao, Y., Elskens, M., Phrommavanh, V., Descostes, M. Uranium aqueous speciation in the vicinity of the former uranium mining sites using the diffusive gradients in thin films and ultrafiltration techniques. Anal. Chim. Acta 2016, 913, 94; https://doi.org/10.1016/j.aca.2016.01.052.Search in Google Scholar PubMed
16. Zareh, M. M., Aldaher, A., Hussein, A. E. M., Mahfouz, M. G., Soliman, M. Uranium adsorption from a liquid waste using thermally and chemically modified bentonite. J. Radioanal. Nucl. Chem. 2013, 295, 1153; https://doi.org/10.1007/s10967-012-2234-8.Search in Google Scholar
17. Gupta, V. K., Saleh, T. A. Sorption of pollutants by porous carbon, carbon nanotubes and fullerene—an overview. Environ. Sci. Pollut. Res. 2013, 20, 2828; https://doi.org/10.1007/s11356-013-1524-1.Search in Google Scholar PubMed
18. Caccin, M., Giacobbo, F., Da Ros, M., Besozzi, L., Mariani, M. Adsorption of uranium, cesium and strontium onto coconut shell activated carbon. J. Radioanal. Nucl. Chem. 2013, 297, 9; https://doi.org/10.1007/s10967-012-2305-x.Search in Google Scholar
19. Yue, Y., Sun, X., Mayes, R. T., Kim, J., Fulvio, P. F., Qiao, Z., Brown, S., Tsouris, C., Oyola, Y., Dai, S. Polymer-coated nanoporous carbons for trace seawater uranium adsorption. Sci. China Chem. 2013, 56, 1510; https://doi.org/10.1007/s11426-013-4995-5.Search in Google Scholar
20. Amer, A., Elewa, A., Attallah, M., Gad, H. Removal of some heavy metals contaminants from aqueous solutions by applying biomass-based modified activated carbon. Egypt. J. Chem. 2021, 64, 5929; https://doi.org/10.21608/ejchem.2021.72070.3600.Search in Google Scholar
21. Rihan, R. E.-S., Abo-Aly, M. M., Attallah, M. F. Potential recycle of industrial waste towards economic adsorbent preparation for effective removal of toxic elements. Desalination Water Treat. 2021, 225, 231; https://doi.org/10.5004/dwt.2021.27211.Search in Google Scholar
22. Saleem, J., Shahid, U. B., Hijab, M., Mackey, H., McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefin. 2019, 9, 775; https://doi.org/10.1007/s13399-019-00473-7.Search in Google Scholar
23. Moosavi, S., Lai, C. W., Gan, S., Zamiri, G., Pivehzhani, O. A., Johan, M. R. Application of efficient magnetic particles and activated carbon for dye removal from wastewater. ACS Omega 2020, 5, 20684; https://doi.org/10.1021/acsomega.0c01905.Search in Google Scholar PubMed PubMed Central
24. Sales, E. S., Schneider, J. M. F. M., Santos, M. J. L., Bortoluzzi, A. J., Cardoso, D. R., Santos, W. G., Merlo, A. A. Quinolines by three-component reaction: synthesis and photophysical studies. J. Braz. Chem. Soc. 2015, 26, 562; https://doi.org/10.5935/0103-5053.20150011.Search in Google Scholar
25. Marella, A., Tanwar, O. P., Saha, R., Ali, M. R., Srivastava, S., Akhter, M., Shaquiquzzaman, M., Alam, M. M. Quinoline: a versatile heterocyclic. Saudi Pharmaceut. J. 2013, 21, 1; https://doi.org/10.1016/j.jsps.2012.03.002.Search in Google Scholar PubMed PubMed Central
26. Prajapati, S. M., Patel, K. D., Vekariya, R. H., Panchal, S. N., Patel, H. D. Recent advances in the synthesis of quinolines: a review. RSC Adv. 2014, 4, 24463; https://doi.org/10.1039/c4ra01814a.Search in Google Scholar
27. Khalid, M., Ullah, M. A., Adeel, M., Khan, M. U., Tahir, M. N., Braga, A. A. C. Synthesis, crystal structure analysis, spectral IR, UV–Vis, NMR assessments, electronic and nonlinear optical properties of potent quinoline based derivatives: interplay of experimental and DFT study. J. Saudi Chem. Soc. 2019, 23, 546; https://doi.org/10.1016/j.jscs.2018.09.006.Search in Google Scholar
28. Gole, K., Stephan, H., Krüger, T., Möckel, A., Woller, N., Subklew, G., Schwuger, M. J., Neumann, R., Weber, E. Solvent extraction of toxic heavy metal ions with 8-hydroxyquinoline extractants from effluents. In Interfaces, Surfactants and Colloids in Engineering. Prog. Colloid Polym. Sci.; Jacobasch, H. J., Ed.; Steinkopff, Vol. 101, 1996; p. 145.10.1007/BFb0114460Search in Google Scholar
29. Brunauer, S., Emmett, P. H., Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309; https://doi.org/10.1021/ja01269a023.Search in Google Scholar
30. Barret, E. P., Joyner, L. G., Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373; https://doi.org/10.1021/ja01145a126.Search in Google Scholar
31. Lv, X., Liang, X., Xu, P., Chen, L. A numerical study on oxygen adsorption in porous media of coal rock based on fractal geometry. R. Soc. Open Sci. 2020, 7, 191337; https://doi.org/10.1098/rsos.191337.Search in Google Scholar PubMed PubMed Central
32. Li, X., Gao, Z., Fang, S., Ren, C., Yang, K., Wang, F. Fractal characterization of nanopore structure in shale, tight sandstone and mudstone from the Ordos basin of China using nitrogen adsorption. Energies 2019, 12, 583; https://doi.org/10.3390/en12040583.Search in Google Scholar
33. Shahr El-Din, A. M., Labib, S., Allan, K. F., Attallah, M. F. Novel nano network trigonal prismatic Ba2CoO4–deficient BaCoO3 for high-affinity sorption of radiolanthanide elements of biomedical applications: synthesis and sorption studies. Environ. Sci. Pollut. Res. 2021, 28, 21936; https://doi.org/10.1007/s11356-020-12233-6.Search in Google Scholar PubMed
34. Labib, S., Shahr El-Din, A. M., Allan, K. F., Attallah, M. F. Synthesis of highly deficient nano SrCoOx for the purification of lanthanides from monazite concentrate. J. Radioanal. Nucl. Chem. 2020, 323, 1179; https://doi.org/10.1007/s10967-020-07031-w.Search in Google Scholar
35. Ibrahim, I. M., Yunus, S., Hashim, M. A. Relative performance of isopropylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. Int. J. Sci. Eng. Res. 2013, 4, 1.Search in Google Scholar
36. Nandiyanto, A. B. D., Oktiani, R., Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97; https://doi.org/10.17509/ijost.v4i1.15806.Search in Google Scholar
37. Fernandes, R. F., Stroppa, P. H. F., Ferreira, G. R., da Silva, A. D., Edwards, H. G. M., de Oliveira, L. F. C. Vibrational spectroscopic study of some quinoline derivatives. Vib. Spectrosc. 2016, 86, 128; https://doi.org/10.1016/j.vibspec.2016.06.005.Search in Google Scholar
38. Gopal, J., Chun, S., Doble, M. Attenuated total reflection Fourier transform infrared spectroscopy towards disclosing mechanism of bacterial adhesion on thermally stabilized titanium nano-interfaces. J. Mater. Sci. Mater. Med. 2016, 27, 135; https://doi.org/10.1007/s10856-016-5739-9.Search in Google Scholar PubMed
39. Gad, H. M. H., Labib, S., Aly, M. I. Synthesis, characterization and application of nano-adsorbent materials in the sorption of Pb(II), Ni(II), Co(II), Mn(II), Li(I) from aqueous solution. JAC 2014, 10, 3053; https://doi.org/10.24297/jac.v10i8.2256.Search in Google Scholar
40. Labib, S., Tohamy, M., Elmaghraby, E. K. The surface and bulk properties of CuO ribbons and ZnO particles mixture using physical adsorption and gamma ray attenuation techniques. Mater. Werkst. 2021, 52, 74; https://doi.org/10.1002/mawe.202000117.Search in Google Scholar
41. Chandra, S., Saleem, H., Sundaraganesan, N., Sebastian, S. Experimental and theoretical vibrational spectroscopic and HOMO, LUMO studies of 1,3–dimethylbarbituric acid. Indian J. Chem. 2009, 48A, 1219.Search in Google Scholar
42. Stoia, M., Barvinschi, P., Barbu-Tudoran, L. Thermal decomposition of metal nitrates. J. Therm. Anal. Calorim. 2013, 113, 21; https://doi.org/10.1007/s10973-012-2786-4.Search in Google Scholar
43. Roy, S., Rhim, J.-W. Melanin-mediated synthesis of copper oxide nanoparticles and preparation of functional agar/CuO np nanocomposite films. J. Nanomater. 2019, 2019, 1; https://doi.org/10.1155/2019/2840517.Search in Google Scholar
44. Matwijczuk, A., Oniszczuk, T., Matwijczuk, A., Chruściel, E., Kocira, A., Niemczynowicz, A., Wójtowicz, A., Combrzyński, M., Wiącek, D. Use of FTIR spectroscopy and chemometrics with respect to storage conditions of Moldavian dragonhead oil. Sustainability 2019, 11, 6414; https://doi.org/10.3390/su11226414.Search in Google Scholar
45. Junior, M. A. d. A., Matsushima, J. T., Rezende, M. C., Gonçalves, E. S., Marcuzzo, J. S., Baldan, M. R. Production and characterization of activated carbon fiber from textile PAN fiber. J. Aero. Technol. Manag. 2017, 9, 423; https://doi.org/10.5028/jatm.v9i4.831.Search in Google Scholar
46. Lazzarini, A., Piovano, A., Pellegrini, R., Leofanti, G., Agostini, G., Rudić, S., Chierotti, M. R., Gobetto, R., Battiato, A., Spoto, G., Zecchina, A., Lamberti, C., Groppo, E. A comprehensive approach to investigate the structural and surface properties of activated carbons and related Pd-based catalysts. Catal. Sci. Technol. 2016, 6, 4910; https://doi.org/10.1039/c6cy00159a.Search in Google Scholar
47. Mallick, A. K., Jha, A., Pokharel, B. P., Shrestha, R. M., Rajbhandari, R. Activated carbons derived from date (Phoenix dactylifera) seeds with excellent iodine adsorption properties. J. Inst. Eng. 2019, 15, 165; https://doi.org/10.3126/jie.v15i2.27663.Search in Google Scholar
48. Alcaraz, L., Fernández, A. L., García-Díaz, I., López, F. A. Preparation and characterization of activated carbons from winemaking wastes and their adsorption of methylene blue. Adsorpt. Sci. Technol. 2018, 36, 1331; https://doi.org/10.1177/0263617418770295.Search in Google Scholar
49. Paraschuk, D. Y., Golovnin, I. V., Smekhova, A. G., Kobryanskii, V. M. Anomalously high Raman scattering cross section for carbon-carbon vibrations in trans-nanopolyacetylene. JETP Lett. 2002, 76, 572; https://doi.org/10.1134/1.1538292.Search in Google Scholar
50. Manoharan, R., Sethi, N. K. Raman analyzers. In Analysis and Analyzers Volume II; Lipták, B. G., Venczel, K., Eds. Taylor and Francis: London, 2003; p. 1609.Search in Google Scholar
51. Mazo, M. A., Tamayo, A., Rubio, J. Stable highly porous silicon oxycarbide glasses from pre-ceramic hybrids. J. Mater. Chem. A 2015, 3, 23220; https://doi.org/10.1039/c5ta05656j.Search in Google Scholar
52. Holmes, H. F., Fuller, E. L., Gammage, R. B., Secoy, C. H. The effect of irreversibly adsorbed water on the character of thorium oxide surfaces. In Hydrophobic Surfaces; Fowkes, F. M., Ed. Academic Press: Amestrdam, Netherlands, 1969; pp. 79–87. https://www.sciencedirect.com/science/article/pii/B9780123955944500129.10.1016/B978-0-12-395594-4.50012-9Search in Google Scholar
53. Liu, K., Ostadhassan, M., Jang, H. W., Zakharova, N. V., Shokouhimehr, M. Comparison of fractal dimensions from nitrogen adsorption data in shale via different models. RSC Adv. 2021, 11, 2298; https://doi.org/10.1039/d0ra09052b.Search in Google Scholar PubMed PubMed Central
54. Xi, Z., Tang, S., Wang, J., Yi, J., Guo, Y., Wang, K. Pore structure and fractal characteristics of Niutitang shale from China. Minerals 2018, 8, 163; https://doi.org/10.3390/min8040163.Search in Google Scholar
55. Wang, X., Zhu, Y., Wang, Y. Fractal characteristics of micro- and mesopores in the longmaxi shale. Energies 2020, 13, 1349; https://doi.org/10.3390/en13061349.Search in Google Scholar
56. Kim, D.-W., Cho, M.-W., Seo, T.-I., Shin, Y.-J. Experimental study on the effects of alumina abrasive particle behavior in MR polishing for MEMS applications. Sensors 2008, 8, 222; https://doi.org/10.3390/s8010222.Search in Google Scholar PubMed PubMed Central
57. Borai, E., Attallah, M., Harjula, R., Koivula, R., Paajanen, A. Separation of europium from cobalt using antimony silicates in sulfate acidic media. Miner. Process. Extr. Metall. Rev. 2012, 33, 204; https://doi.org/10.1080/08827508.2011.562951.Search in Google Scholar
58. Borai, E. H., Hilal, M. A., Attallah, M. F., Shehata, F. A. Improvement of radioactive liquid waste treatment efficiency by sequential cationic and anionic ion exchangers. Radiochim. Acta 2008, 96, 441; https://doi.org/10.1524/ract.2008.1506.Search in Google Scholar
59. Belgacem, A., Rebiai, R., Hadoun, H., Khemaissia, S., Belmedani, M. The removal of uranium (VI) from aqueous solutions onto activated carbon developed from grinded used tire. Environ. Sci. Pollut. Res. 2014, 21, 684; https://doi.org/10.1007/s11356-013-1940-2.Search in Google Scholar PubMed
60. Salah, B. A., Gaber, M. S., Kandil, A. H. T. The removal of uranium and thorium from their aqueous solutions by 8-hydroxyquinoline immobilized bentonite. Minerals 2019, 9, 626; https://doi.org/10.3390/min9100626.Search in Google Scholar
61. Donat, R., Erden, K. E. Adsorption of U(VI) ions from aqueous solutions by activated carbon prepared from Antep pistachio (Pistacia vera L.) shells. Radiochim. Acta 2017, 105, 359; https://doi.org/10.1515/ract-2016-2637.Search in Google Scholar
62. He, J., Sun, F., Han, F., Gu, J., Ou, M., Xu, W., Xu, X. Preparation of a novel polyacrylic acid and chitosan interpenetrating network hydrogel for removal of U(VI) from aqueous solutions. RSC Adv. 2018, 8, 12684; https://doi.org/10.1039/c7ra13065a.Search in Google Scholar PubMed PubMed Central
63. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361; https://doi.org/10.1021/ja02242a004.Search in Google Scholar
64. Allan, K. F., Labib, S., Holeil, M. Synthesis and characterization of iron sulfide powders and its application for sorption of europium radionuclides. Desalination Water Treat. 2016, 57, 19495; https://doi.org/10.1080/19443994.2015.1099476.Search in Google Scholar
65. Freundlich, H. M. F. Über die Adsorption in Lösungen. Z. Phys. Chem. 1906, 57A, 385; https://doi.org/10.1515/zpch-1907-5723.Search in Google Scholar
66. Lagergren, S. Zur Theorie der sogenannten Adsorption gelöster Stoffe. K. Sven. Vetenskapsakad. Handl. 1898, 24, 1.Search in Google Scholar
67. Ho, Y. S., McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451; https://doi.org/10.1016/s0032-9592(98)00112-5.Search in Google Scholar
68. Weber, W. J., Morris, J. C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31; https://doi.org/10.1061/jsedai.0000430.Search in Google Scholar
69. Teng, H., Hsieh, C.-T. Activation energy for oxygen chemisorption on carbon at low temperatures. Ind. Eng. Chem. Res. 1999, 38, 292; https://doi.org/10.1021/ie980107j.Search in Google Scholar
70. Attallah, M. F., Borai, E. H., Allan, K. F. Kinetic and thermodynamic studies for cesium removal from low-level liquid radioactive waste using impregnated polymeric material. Radiochemistry 2009, 51, 622; https://doi.org/10.1134/s1066362209060113.Search in Google Scholar
71. Attallah, M. F., Hassan, H. S., Youssef, M. A. Synthesis and sorption potential study of Al2O3–ZrO2–CeO2 composite material for removal of some radionuclides from radioactive waste effluent. Appl. Radiat. Isot. 2019, 147, 40; https://doi.org/10.1016/j.apradiso.2019.01.015.Search in Google Scholar
72. Nibou, D., Khemaissia, S., Amokrane, S., Barkat, M., Chegrouche, S., Mellah, A. Removal of UO22+ onto synthetic NaA zeolite. Characterization, equilibrium and kinetic studies. Chem. Eng. J. 2011, 172, 296; https://doi.org/10.1016/j.cej.2011.05.113.Search in Google Scholar
73. Haddad, D., Mellah, A., Nibou, D., Khemaissia, S. Promising enhancement in the removal of uranium ions by surface-modified activated carbons: kinetic and equilibrium studies. J. Environ. Eng. 2018, 144, 04018027; https://doi.org/10.1061/(asce)ee.1943-7870.0001349.Search in Google Scholar
74. van’t Hoff, J. H. Die Rolle des osmotischen Druckes in der Analogie zwischen Lösungen und Gasen. Z. Phys. Chem. 1887, 1U, 481; https://doi.org/10.1515/zpch-1887-0151.Search in Google Scholar
75. Kumar, K. V., Gadipelli, S., Wood, B., Ramisetty, K. A., Stewart, A. A., Howard, C. A., Brett, D. J. L., Rodriguez-Reinoso, F. Characterization of the adsorption site energies and heterogeneous surfaces of porous materials. J. Mater. Chem. A 2019, 7, 10104; https://doi.org/10.1039/c9ta00287a.Search in Google Scholar
76. Zhang, Q., Li, Q.-K., Li, M. Key factors affecting mechanical behavior of metallic glass nanowires. Sci. Rep. 2017, 7, 41365; https://doi.org/10.1038/srep41365.Search in Google Scholar PubMed PubMed Central
77. Wei, K.-H., Wang, Y.-S., Liu, C.-P., Chen, K.-W., Wang, Y.-L., Cheng, Y.-L. The influence of abrasive particle size in copper chemical mechanical planarization. Surf. Coating Technol. 2013, 231, 543; https://doi.org/10.1016/j.surfcoat.2012.04.004.Search in Google Scholar
78. Choi, S., Doyle, F. M., Dornfeld, D. A. Material removal mechanism during copper chemical mechanical planarization based on nano-scale material behavior. ECS J. Solid State Sci. Technol. 2017, 6, 235; https://doi.org/10.1149/2.0071705jss.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- Sorption behavior of natural uranium from aqueous solutions using modified activated carbon with quinoline
- Adsorption of UO2 2+ by AlBaNi-layered double hydroxide nano-particles: kinetic, isothermal, and thermodynamic studies
- Behaviour of DGA and Ln resin with alpha radiation dose
- Sintering Bi2O3–B2O3–ZnO ternary low temperature glass by hydration device to solidify iodine containing silver-coated silica gel
- Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation
- Co-transport of bentonite colloid and U(VI) in particulate granite column: role of colloid concentration, ionic strength, pH and flow rate
Articles in the same Issue
- Frontmatter
- Original Papers
- Sorption behavior of natural uranium from aqueous solutions using modified activated carbon with quinoline
- Adsorption of UO2 2+ by AlBaNi-layered double hydroxide nano-particles: kinetic, isothermal, and thermodynamic studies
- Behaviour of DGA and Ln resin with alpha radiation dose
- Sintering Bi2O3–B2O3–ZnO ternary low temperature glass by hydration device to solidify iodine containing silver-coated silica gel
- Enhancement of the thermal and physicochemical properties of styrene butadiene rubber composite foam using nanoparticle fillers and electron beam radiation
- Co-transport of bentonite colloid and U(VI) in particulate granite column: role of colloid concentration, ionic strength, pH and flow rate