Abstract
Oxonol dyes are classified as anionic polymethine dyes, which cover a wide variety of structural types. The name of the class originates from the oxygen atoms which terminate each end of the polymethine chains that form the backbone of their structure. In technically useful dyes, these oxygen atoms tend to be substituents of heterocycles. The main technical application of water soluble oxonol dyes was in silver halide photography as filter dyes and antihalation dyes. Lipophilic oxonol dyes are used in bio-analysis and medical diagnostics to stain cells, bacteria or liposomes for example. Their main bioanalytical usage is in the determination of membrane potentials in eukaryotic cells and prokaryotic bacteria.
References
1. Brooker LG, Kreyes GH. US 2 241 238. 29 Apr 1939.10.1080/00358533908450975Search in Google Scholar
2. König W. Über den Begriff der „Polymethinfarbstoffe“ und eine davon ableitbare allgemeine Farbstoff-Formel als Grundlage einer neuen Systematik der Farbenchemie. J Prakt Chem. [2] 1926;112:1.10.1002/prac.19261120101Search in Google Scholar
3. Mustroph H. Polymethine dyes. Phys Sci Rev. 2020;5. DOI:10.1515/psr-2019-0084.Search in Google Scholar
4. Tyutyulkov N, Fabian J, Mehlhorn A, Dietz F, Tadjer A. Polymethine dyes – structure and properties. Sofia: St Kliment Ohridski University Press, 1991.Search in Google Scholar
5. Sturmer DM. Syntheses and properties of cyanine and related dyes. In: Weissberger A, Taylor EC, editors. The chemistry of heterocyclic compounds. vol. 30. New York: Wiley, 1977:441–587.10.1002/9780470187005.ch8Search in Google Scholar
6. Griffiths J. Colour and constitution of organic molecules. London: Academic Press, 1976.Search in Google Scholar
7. Dähne S. Systematik und Begriffserweiterung der Polymethinfarbstoffe. Z Chem. 1965;5:441.10.1002/zfch.19650051202Search in Google Scholar
8. Hamer FM. The cyanine dyes and related compounds. In: Weissberger A, editor. The chemistry of heterocyclic compounds. vol. 18. New York: Interscience, 1964.10.1002/9780470186794Search in Google Scholar
9. Radeglia R. 13C-NMR-Spektroskopische Untersuchungen der Elektronenstruktur von einfachen Polymethinen. 13C-Chemische Verschiebungen, 13C-H- Kopplungskonstanten und Eu(DPM)3-Verschiebungseffekte. J Prakt Chem. 1973;315:1121.10.1002/prac.19733150616Search in Google Scholar
10. Etter MC, Kress RB, Bernstein J, Cash DJ. Solid-state chemistry and structures of a new class of mixed dyes. Cyanine-oxonol. J Am Chem Soc. 1984;106:6921.10.1021/ja00335a009Search in Google Scholar
11. Grossel MC, Edwards DJ, Cheetham AK, Eddy MM, Johnson O, Postle SR. Oxonol dyes: X-ray crystallographic and solid-state 13C nuclear magnetic resonance studies of some organic semiconductors. J Mater Chem. 1991;1:223.10.1039/jm9910100223Search in Google Scholar
12. Malhotra SS, Whiting MC. Researches on polyenes. Part VII. The preparation and electronic absorption spectra of homologous series of simple cyanines, merocyanines, and oxonols. J Chem Soc. 1960;3812.10.1039/jr9600003812Search in Google Scholar
13. Knorr L. Synthetische Versuche mit dem Acetessigester. Liebigs Ann Chem. 1887;238:137.10.1002/jlac.18872380107Search in Google Scholar
14. Mustroph H. Cyanine dyes. Phys Sci Rev. 2020;5. DOI:10.1515/psr-2020-0145.Search in Google Scholar
15. James TH, editor. The theory of the photographic process. 4th ed. New York: Macmillan, 1977.Search in Google Scholar
16. Keller K, Kampfer H, Matejec R, Lapp O, Krafft W, Frenken H, et al. Photography. In: Elvers B, editor. Ullmann´s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, 2000.10.1002/14356007.a20_001Search in Google Scholar
17. Fujita S. Organic chemistry in photography. Berlin: Springer, 2004.10.1007/978-3-662-09130-2Search in Google Scholar
18. Sabnis RW. handbook of biological dyes and stains. Hoboken: Wiley; 2010.10.1002/9780470586242Search in Google Scholar
19. Haugland RP. The handbook: a guide to fluorescent probes and labeling technologies. Eugene: Molecular Probes Inc, 2005.Search in Google Scholar
20. Mustroph H, Stollenwerk M, Bressau V. Current developments in optical data storage with organic dyes. Angew Chem Int Ed. 2006;45:2016.10.1002/anie.200502820Search in Google Scholar PubMed
21. Wochele RE, van Houten H, Duchateau JP, Kloosterboer HJ, Verhoeven JA, van Vlimmeren R, et al. Information storage materials, 2. Optical recording. In: Elvers B, editor. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH, 2011.10.1002/14356007.o14_o07Search in Google Scholar
22. Inagaki Y, Morishima S, Wariishi K, Saito N, Akiba M. A new class of light-fast oxonol dyes : organic-glass forming salts of oxonol anions and 4,4´-bipyridinium cations. J Mater Chem. 2006;16:345.10.1039/B516043JSearch in Google Scholar
23. Morishima S, Wariishi K, Mikoshiba H, Inagaki Y, Shibata M, Hashimoto H, et al. Tuning the thermochemical properties of oxonol dyes for digital versatile disc recordable: reduction of thermal interference in high-speed recording. J Soc Photogr Sci Technol Jpn. 2010;73:252.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston