Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties
-
Niklas Lucht
Abstract
Multi responsive hydrogels have many potential applications in the field of medicine as well as technical fields and are of great interest in fundamental research. Here we present the synthesis and characterization of tailored magnetic hydrogels – micro- as well as macrogels – which consist of iron oxide and cobalt ferrite, varying in phase and morphology, embedded in a thermoresponsive polymer. We introduce new ways to synthesize magnetic particles and revisit some common strategies when dealing with particle synthesis. Subsequently we discuss the details of the thermoresponsive matrix and how we can influence and manipulate the thermoresponsive properties, i.e. the lower critical solution temperature. Ultimately, we present the particle-hydrogel composite and show two exemplary applications for particle matrix interactions, i.e. heat transfer and reorientation of the particles in a magnetic field.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: SPP 1681
Acknowledgment
The authors would also like to thank various work groups inside the SPP1681 for the fruitful cooperation that lead to different publications during the time of the project. The authors would like to acknowledge Andreas Weidner and the group of Sylvio Dutz from Ilmenau for the cooperation in the synthesis of multicore particles. The authors would like to thank Sebastian Draack and the groups of Thilo Viereck and Frank Ludwig for fruitful discussions and mutual publication of the research. The authors would also like to thank Ralf P. Friedrich and the group of Christoph Alexiou for much insight into biocompatibility of nanoparticles and work toward a publication in cooperation with Sebastian Draack. The authors would like to thank Almut Barck and Margarethe Fritz for measuring XRD. The authors acknowledge Fabian Westermeier and Michael Sprung for their help during beamtime at DESY P10.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The Deutsche Forschungsgemeinschaft is kindly acknowledged for funding our project under the SPP 1681 “Field Controlled Particle-Matrix Interactions” with the Project FI 1235/2-1 and FI 1235/2-2. Stephan Hinrichs would like to acknowledge the doctoral scholarship of the University of Hamburg for funding the first funding period of his work.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Lattermann, G, Krekhova, M. Thermorevers Ferrogels Macromol Rapid Commun 2006;27:1373–9. https://doi.org/10.1002/marc.200600284.10.1002/marc.200600284Search in Google Scholar
2. Messing, R, Schmidt, AM. Perspectives for the mechanical manipulation of hybrid hydrogels. Polym Chem 2011;2. https://doi.org/10.1039/c0py00129e.Search in Google Scholar
3. Thevenot, J, Oliveira, H, Sandre, O, Lecommandoux, S. Magnetic responsive polymer composite materials. Chem Soc Rev 2013;42:7099–116. https://doi.org/10.1039/c3cs60058k.Search in Google Scholar PubMed
4. Menzel, AM. Tuned, driven, and active soft matter. Phys Rep 2015;554:1–45. https://doi.org/10.1016/j.physrep.2014.10.001.Search in Google Scholar
5. Gil, ES, Hudson, SM. Stimuli-responsive polymers and their bioconjugates. Prog Polym Sci 2004;29:1173–222. https://doi.org/10.1016/j.progpolymsci.2004.08.003.Search in Google Scholar
6. Smith, AE, Xu, X, McCormick, CL. Stimuli-responsive amphiphilic (co)polymers via RAFT polymerization. Prog Polym Sci 2010;35:45–93. https://doi.org/10.1016/j.progpolymsci.2009.11.005.Search in Google Scholar
7. de Las Heras Alarcon, C, Pennadam, S, Alexander, C. Stimuli responsive polymers for biomedical applications. Chem Soc Rev 2005;34:276–85. https://doi.org/10.1039/b406727d.Search in Google Scholar PubMed
8. Calvert, P. Hydrogels for soft machines. Adv Mater 2009;21:743–56. https://doi.org/10.1002/adma.200800534.Search in Google Scholar
9. Li, Y, Huang, G, Zhang, X, Li, B, Chen, Y, Lu, T, et al.. Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 2013;23:660–72. https://doi.org/10.1002/adfm.201201708.Search in Google Scholar
10. Jordan, A, Scholz, R, Maier-Hauff, K, Johannsen, J, Wust, P, Nadobny, J, et al.. Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 2001;225. https://doi.org/10.1016/s0304-8853(00)01239-7.Search in Google Scholar
11. Yadavalli, T, Ramasamy, S, Chandrasekaran, G, Michael, I, Therese, HA, Chennakesavulu, R. Dual responsive PNIPAM–chitosan targeted magnetic nanopolymers for targeted drug delivery. J Magn Magn Mater 2015;380:315–20. https://doi.org/10.1016/j.jmmm.2014.09.035.Search in Google Scholar
12. Büscher, K, Helm, CA, Gross, C, Glöckl, G, Romanus, E, Weitschies, W. Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langmuir 2004;20. https://doi.org/10.1021/la030261x.Search in Google Scholar PubMed
13. Hergt, R, Dutz, S, Roder, M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia. J Phys Condens Matter 2008;20:385214. https://doi.org/10.1088/0953-8984/20/38/385214.Search in Google Scholar PubMed
14. Rosensweig, RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 2002;252:370–4. https://doi.org/10.1016/s0304-8853(02)00706-0.Search in Google Scholar
15. Ozaki, M, Egami, T, Sugiyama, N, Matijević, E. Agglomeration in colloidal hematite dispersions due to weak magnetic interactions: II. The effects of particle size and shape. J Colloid Interface Sci 1988;126:212–9. https://doi.org/10.1016/0021-9797(88)90114-2.Search in Google Scholar
16. Ozaki, M, Suzuki, H, Takahashi, K, Matijević, E. Reversible ordered agglomeration of hematite particles due to weak magnetic interactions. J Colloid Interface Sci 1986;113:76–80. https://doi.org/10.1016/0021-9797(86)90207-9.Search in Google Scholar
17. Lee, N, Kim, H, Choi, SH, Park, M, Kim, D, Kim, H-C, et al.. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci USA 2011;108:2662–7. https://doi.org/10.1073/pnas.1016409108.Search in Google Scholar PubMed PubMed Central
18. Materia, ME, Guardia, P, Sathya, A, Pernia Leal, M, Marotta, R, Di Corato, R, et al.. Mesoscale assemblies of iron oxide nanocubes as heat mediators and image contrast agents. Langmuir 2015;31:808–16. https://doi.org/10.1021/la503930s.Search in Google Scholar PubMed
19. Wang, C, Peng, S, Lacroix, L-M, Sun, S, et al.. Synthesis of high magnetic moment CoFe nanoparticles via interfacial diffusion in core/shell structured Co/Fe nanoparticles. Nano Res 2010;2:380–5. https://doi.org/10.1007/s12274-009-9037-4.Search in Google Scholar
20. Santoyo Salazar, J, Perez, L, de Abril, O, Truong Phuoc, L, Ihiawakrim, D, Vazquez, M, et al.. Magnetic iron oxide nanoparticles in 10−40 nm range: composition in terms of magnetite/maghemite ratio and effect on the magnetic properties. Chem Mater 2011;23:1379–86. https://doi.org/10.1021/cm103188a.Search in Google Scholar
21. Hufschmid, R, Arami, H, Ferguson, RM, Gonzales, M, Teeman, E, Brush, LN, et al.. Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 2015;7:11142–54. https://doi.org/10.1039/c5nr01651g.Search in Google Scholar PubMed PubMed Central
22. Palanisamy, S, Wang, YM. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 2019;48:9490–515. https://doi.org/10.1039/c9dt00459a.Search in Google Scholar PubMed
23. Massart, R, Dubois, E, Cabuil, V, Hasmonay, E. Preparation and properties of monodisperse magnetic fluids. J Magn Magn Mater 1995;149:1–5. https://doi.org/10.1016/0304-8853(95)00316-9.Search in Google Scholar
24. Kaman, O, Kulickova, J, Herynek, V, Koktan, J, Maryško, M, Dědourková, T, et al.. Preparation of Mn-Zn ferrite nanoparticles and their silica-coated clusters: magnetic properties and transverse relaxivity. J Magn Magn Mater 2017;427:251–7. https://doi.org/10.1016/j.jmmm.2016.10.095.Search in Google Scholar
25. Hayashi, H, Hakuta, Y. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 2010;3:3794–817. https://doi.org/10.3390/ma3073794.Search in Google Scholar PubMed PubMed Central
26. Cornell, RM, Schwertmann, U. Adsorption of ions and molecules. In: The iron oxides. Weinheim: Wiley‐VCH Verlag GmbH & Co. KGaA; 2003:253–96 pp.Search in Google Scholar
27. Thies-Weesie, DME, de Hoog, JP, Mendiola, MHH, Petukhov, AV, Vroege, GJ. Synthesis of goethite as a model colloid for mineral liquid crystals. Chem Mater 2007;19:5538–46. https://doi.org/10.1021/cm071229h.Search in Google Scholar
28. Rădiţoiu, V, Diamandescu, L, Cosmin Corobea, M, Rădiţoiu, A, Popescu-Pogrion, N, Nicolae, CA. A facile hydrothermal route for the synthesis of α-FeOOH with controlled morphology. J Cryst Growth 2012;348:40–6.10.1016/j.jcrysgro.2012.03.032Search in Google Scholar
29. Zamiri, R, Ahangar, HA, Zakaria, A, Zamiri, G, Bahari, HR, Drummen, GPC. Hydrothermal synthesis of goethite (α-FeOOH) nanorods in the presence of ethylenediamine:thiourea. J Nano Res 2014;16:1–10. https://doi.org/10.1007/s11051-014-2333-2.Search in Google Scholar
30. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci (Lond) 1973;241:20–2. https://doi.org/10.1038/physci241020a0.Search in Google Scholar
31. Leff, DV, Ohara, PC, Heath, JR, Gelbart, WM. Thermodynamic control of gold nanocrystal size: experiment and theory. J Phys Chem 1995;99:7036–41. https://doi.org/10.1021/j100018a041.Search in Google Scholar
32. Hinrichs, S, Hankiewicz, B. Goethite nanorods: synthesis and investigation of the size effect on their orientation within a magnetic field by SAXS. Nanomaterials 2020;10:2526.10.3390/nano10122526Search in Google Scholar PubMed PubMed Central
33. Sugimoto, S, Wang, Y, Itoh, H, Muramatsu, A. Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles. Colloids Surf, A Physicochem Eng Asp 1998;265–79.10.1016/S0927-7757(97)00103-9Search in Google Scholar
34. Malik, V, Grobety, B, Trappe, V, Dietsch, H, Schurtenberger, P. A closer look at the synthesis and formation mechanism of hematite nanocubes. Colloids Surf A-Physicochem Eng Asp 2014;445:21–9. https://doi.org/10.1016/j.colsurfa.2013.12.069.Search in Google Scholar
35. Ozaki, M, Kratohvil, S, Matijevic, E. Formation of monodispersed spindle-type hematite particles. J Colloid Interface Sci 1984;102:146–51. https://doi.org/10.1016/0021-9797(84)90208-x.Search in Google Scholar
36. Märkert, C, Fischer, B, Wagner, J. Small-angle scattering from spindle-shaped colloidal hematite particles in external magnetic fields. J Appl Crystallogr 2011;44:441–7. https://doi.org/10.1107/s0021889811009617.Search in Google Scholar
37. Pu, ZF, Cao, MH, Jing, Y, Hu, C. Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes. Nanotechnology 2006;17:799–804. https://doi.org/10.1088/0957-4484/17/3/031.Search in Google Scholar
38. Harraz, FA. Polyethylene glycol-assisted hydrothermal growth of magnetite nanowires: synthesis and magnetic properties. Phys E Low-dimens Syst Nanostruct 2008;40:3131–6. https://doi.org/10.1016/j.physe.2008.05.007.Search in Google Scholar
39. Sugimoto, T, Muramatsu, A. Formation mechanism of monodispersed α-Fe2O3 particles in dilute FeCl3 solutions. J Colloid Interface Sci 1996;184:626–38. https://doi.org/10.1006/jcis.1996.0660.Search in Google Scholar PubMed
40. Wiogo, H, Lim, M, Munroe, P, Amal, R. Understanding the formation of iron oxide nanoparticles with acicular structure from iron(III) chloride and hydrazine monohydrate. Cryst Growth Des 2011;11:1689–96. https://doi.org/10.1021/cg101623n.Search in Google Scholar
41. Yang, W-H, Lee, C-F, Tang, HY, Shieh, D-B, Yeh, C-S. Iron oxide nanopropellers prepared by a low-temperature solution approach. J Phys Chem B 2006;110:14087–91. https://doi.org/10.1021/jp062371t.Search in Google Scholar PubMed
42. Mertelj, A, Lisjak, D, Drofenik, M, Čopič, M. Ferromagnetism in suspensions of magnetic platelets in liquid crystal. Nature 2013;504:237–41. https://doi.org/10.1038/nature12863.Search in Google Scholar PubMed
43. Lemaire, BJ, Davidson, P, Panine, P, Jolivet, JP. Magnetic-field-induced nematic-columnar phase transition in aqueous suspensions of goethite (α-FeOOH) nanorods. Phys Rev Lett 2004;93:267801. https://doi.org/10.1103/physrevlett.93.267801.Search in Google Scholar
44. Sánchez-Ferrer, A, Mezzenga, R, Dietsch, H. Orientational behavior of ellipsoidal silica-coated hematite nanoparticles integrated within an elastomeric matrix and its mechanical reinforcement. Macromol Chem Phys 2011;212:627–34. https://doi.org/10.1002/macp.201000720.Search in Google Scholar
45. Haberl, JM, Sanchez-Ferrer, A, Mihut, AM, Dietsch, H, Hirt, AM, Mezzenga, R. Liquid-crystalline elastomer-nanoparticle hybrids with reversible switch of magnetic memory. Adv Mater 2013;25:1787–91. https://doi.org/10.1002/adma.201204406.Search in Google Scholar PubMed
46. Ozaki, M, Matijević, E. Preparation and magnetic properties of monodispersed spindle-type γ-Fe2O3 particles. J Colloid Interface Sci 1985;107:199–203. https://doi.org/10.1016/0021-9797(85)90162-6.Search in Google Scholar
47. Ngo, AT, Pileni, MP. Cigar-shaped ferrite nanocrystals: orientation of the easy magnetic axes. J Appl Phys 2002;92:8–4649. https://doi.org/10.1063/1.1504494.Search in Google Scholar
48. Bee, A, Massart, R, Neveu, S. Synthesis of very fine maghemite particles. J Magn Magn Mater 1995;149:6–9. https://doi.org/10.1016/0304-8853(95)00317-7.Search in Google Scholar
49. Graf, C, Vossen, DLJ, Imhof, A, van Blaaderen, A. A general method to coat colloidal particles with silica. Langmuir 2003;19:6693–700. https://doi.org/10.1021/la0347859.Search in Google Scholar
50. Zou, J, Peng, YG, Tang, YY. A facile bi-phase synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable film thicknesses. RSC Adv 2014;4:9693–700. https://doi.org/10.1039/c3ra47043a.Search in Google Scholar
51. Zhang, L, Chen, L, Qan, Q-H. Preparation of uniform magnetic microspheres through hydrothermal reduction of iron hydroxide nanoparticles embedded in a polymeric matrixes. Chem Mater 2008;20:3345–53. https://doi.org/10.1021/cm703127j.Search in Google Scholar
52. Crassous, JJ, Mihut, AM, Dietsch, H, Pravaz, O, Ackermann-Hirschi, L, Hirt, AM, et al.. Advanced multiresponsive comploids: from design to possible applications. Nanoscale 2014;6:8726–35. https://doi.org/10.1039/c4nr01243g.Search in Google Scholar PubMed
53. Huang, KC, Ehrman, SH. Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir 2007;23:1419–26. https://doi.org/10.1021/la0618364.Search in Google Scholar PubMed
54. Rozenson, I, Heller-Kallai, L. Reduction and oxidation of Fe3+ in dioctahedral smectites-1: reduction with hydrazine and dithionite. Clay Clay Miner 1976;24:271–82. https://doi.org/10.1346/ccmn.1976.0240601.Search in Google Scholar
55. Anik, T, Touhami, ME, Himm, K, Schireen, S, Belkhmima, RA, Abouchane, M, et al.. Influence of pH solution on electroless copper plating using sodium hypophosphite as reducing agent. Int J Electrochem Sci 2012;7:2009–18.10.1016/S1452-3981(23)13858-2Search in Google Scholar
56. Klačanová, K, Fodran, P, Šimon, P, Rapta, P, Boča, R, Jorik, V, et al.. Formation of Fe(0)-nanoparticles via reduction of Fe(II) compounds by amino acids and their subsequent oxidation to iron oxides. J Chem 2013;2013:1–10.10.1155/2013/961629Search in Google Scholar
57. Iida, H, Nakanishi, T, Takada, H, Osaka, T. Preparation of magnetic iron-oxide nanoparticles by successive reduction-oxidation in reverse micelles: effects of reducing agent and atmosphere. Electrochim Acta 2006;52:292–6. https://doi.org/10.1016/j.electacta.2006.05.007.Search in Google Scholar
58. Hayes, PC, Algie, SH. Process principles in minerals and materials production. Cincinnati: Hayes Publishing; 1993: 660 ff p.Search in Google Scholar
59. Hinrichs, S, Nun, N, Fischer, B. Synthesis and characterization of anisotropic magnetic hydrogels. J Magn Magn Mater 2017;431:237–40. https://doi.org/10.1016/j.jmmm.2016.10.016.Search in Google Scholar
60. Peng, Z, Wu, M, Xiong, Y, Wang, J, Chen, Q. Synthesis of magnetite nanorods through reduction of β-FeOOH. Chem Lett 2005;34:636–7. https://doi.org/10.1246/cl.2005.636.Search in Google Scholar
61. Fan, R, Chen, XH, Gui, Z, Liu, L, Chen, ZY. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4. Mater Res Bull 2001;36:497–502. https://doi.org/10.1016/s0025-5408(01)00527-x.Search in Google Scholar
62. Nemati, Z, Salili, SM, Alonso, J, Ataie, A, Das, R, Phan, MH, et al.. Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: does size matter? J Alloys Compd 2017;714:709–14. https://doi.org/10.1016/j.jallcom.2017.04.211.Search in Google Scholar
63. Dutz, S, Clement, JH, Eberbeck, D, Gelbrich, T, Hergt, R, Müller, R, et al.. Ferrofluids of magnetic multicore nanoparticles for biomedical applications. J Magn Magn Mater 2009;321:1501–4. https://doi.org/10.1016/j.jmmm.2009.02.073.Search in Google Scholar
64. Grafe, C, von der Luhe, M, Weidner, A, Globig, P, Clement, JH, Dutz, S, et al.. Protein corona formation and its constitutional changes on magnetic nanoparticles in serum featuring a polydehydroalanine coating: effects of charge and incubation conditions. Nanotechnology 2019;30:1–15. https://doi.org/10.1088/1361-6528/ab0ed0.Search in Google Scholar PubMed
65. Nappini, S, Magnano, E, Bondino, F, Píš, I., Barla, A., Fantechi, E, et al.. Surface charge and coating of CoFe2O4 nanoparticles: evidence of preserved magnetic and electronic properties. J Phys Chem C 2015;119:25529–41. https://doi.org/10.1021/acs.jpcc.5b04910.Search in Google Scholar
66. Lucht, N, Friedrich, RP, Draack, S, Alexiou, C, Viereck, T, Ludwig, F, et al.. Biophysical characterization of (Silica-coated) cobalt ferrite nanoparticles for hyperthermia treatment. Nanomaterials 2019;9:1–13. https://doi.org/10.3390/nano9121713.Search in Google Scholar PubMed PubMed Central
67. Draack, S, Lucht, N, Remmer, H, Martens, M., Fischer, B., Schilling, M, et al.. Multiparametric magnetic particle spectroscopy of CoFe2O4 nanoparticles in viscous media. J Phys Chem C 2019;123:6787–801. https://doi.org/10.1021/acs.jpcc.8b10763.Search in Google Scholar
68. Remmer, H, Dieckhoff, J, Tschöpe, A, Roeben, E, Schmidt, AM, Ludwig, F. Dynamics of CoFe2O4 single-core nanoparticles in viscoelastic media. Physics Procedia 2015;75:1150–7. https://doi.org/10.1016/j.phpro.2015.12.186.Search in Google Scholar
69. Müller, R, Zhou, M, Liebert, T, Landers, J, Salamon, S, Webers, S, et al.. Mobility investigations of magnetic nanoparticles in biocomposites. Mater Chem Phys 2017;193:364–70. https://doi.org/10.1016/j.matchemphys.2017.02.046.Search in Google Scholar
70. Bossi, E, Zanella, D, Gornati, R, Bernardini, G. Cobalt oxide nanoparticles can enter inside the cells by crossing plasma membranes. Sci Rep 2016;6:1–9. https://doi.org/10.1038/srep22254.Search in Google Scholar PubMed PubMed Central
71. Satarkar, NS, Biswal, D, Hilt, JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 2010;6:2364–71. https://doi.org/10.1039/b925218p.Search in Google Scholar
72. Witt, MU, Hinrichs, S, Moller, N, Backes, S, Fischer, B, von Klitzing, R. Distribution of CoFe2O4 nanoparticles inside PNIPAM-based microgels of different cross-linker distributions. J Phys Chem B 2019;123:2405–13. https://doi.org/10.1021/acs.jpcb.8b09236.Search in Google Scholar PubMed
73. Nack, A, Seifert, J, Passow, C, Wagner, J. Hindered nematic alignment of hematite spindles in poly(N-isopropylacrylamide) hydrogels: a small-angle X-ray scattering and rheology study. J Appl Crystallogr 2018;51:87–96. https://doi.org/10.1107/s1600576717017411.Search in Google Scholar
74. Messing, R, Frickel, N, Belkoura, L, Strey, R, Rahn, H, Odenbach, S. Cobalt ferrite nanoparticles as multifunctional cross-linkers in PAAm ferrohydrogels. Macromolecules 2011;44:2990–9. https://doi.org/10.1021/ma102708b.Search in Google Scholar
75. Hu, Z, Huang, G. A new route to crystalline hydrogels, guided by a phase diagram. Angew Chem Int Ed Engl 2003;42:4799–802. https://doi.org/10.1002/anie.200351326.Search in Google Scholar PubMed
76. Roeder, L, Reckenthäler, M, Belkoura, L, Roitsch, S, Strey, R, Schmidt, AM. Covalent ferrohydrogels based on elongated particulate cross-linkers. Macromolecules 2014;47:7200–7. https://doi.org/10.1021/ma501396j.Search in Google Scholar
77. Acciaro, R, Gilanyi, T, Varga, I. Preparation of monodisperse poly(N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution. Langmuir 2011;27:7917–25. https://doi.org/10.1021/la2010387.Search in Google Scholar PubMed
78. Lucht, N, Eggers, S, Abetz, V. Cononsolvency in the ’drunken’ state: the thermoresponsiveness of a new acrylamide copolymer in water-alcohol mixtures. Polym Chem 2017;8:1196–205. https://doi.org/10.1039/c6py01751g.Search in Google Scholar
79. Bozorg, M, Hankiewicz, B, Abetz, V. Soft Matter 2020;16:1066–81.10.1039/C9SM02032BSearch in Google Scholar PubMed
80. Karg, M, Pastoriza-Santos, I, Liz-Marzan, LM, Hellweg, T. A versatile approach for the preparation of thermosensitive PNIPAM core-shell microgels with nanoparticle cores. Chem Phys Chem 2006;7:2298–301. https://doi.org/10.1002/cphc.200600483.Search in Google Scholar PubMed
81. Karg, M, Wellert, S, Prevost, S, Schweins, R, Dewhurst, C, Liz-Marzán, LM, et al.. Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core. Colloid Polym Sci 2011;289:699–709. https://doi.org/10.1007/s00396-010-2327-2.Search in Google Scholar
82. Nun, N, Hinrichs, S, Schroer, MA, Sheyfer, D, Grübel, G, Fischer, B. Tuning the size of thermoresponsive poly(N-isopropyl acrylamide) grafted silica microgels. Gels 2017;3:3–13. https://doi.org/10.3390/gels3030034.Search in Google Scholar PubMed PubMed Central
83. Hu, Z, Huang, G. A new route to crystalline hydrogels, guided by a phase diagram. Angew Chem Int Ed Engl 2003;42:4799–802. https://doi.org/10.1002/anie.200351326.Search in Google Scholar
84. Migneault, I, Dartiguenave, C, Bertrand, MJ, Waldron, KC. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. Biotechniques 2004;37:798–802. https://doi.org/10.2144/04375rv01.Search in Google Scholar PubMed
85. Wu, X, Pelton, RH, Hamielec, AE, Woods, DR, McPhee, W. The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym Sci 1994;272:467–77. https://doi.org/10.1007/bf00659460.Search in Google Scholar
86. Ozaki, M. Preparation and properties of well-defined magnetic particles. MRS Bull 1989;14:35–40. https://doi.org/10.1557/s0883769400060942.Search in Google Scholar
87. Wagner, J, Markert, C, Fischer, B, Müller, L. Direction dependent diffusion of aligned magnetic rods by means of x-ray photon correlation spectroscopy. Phys Rev Lett 2013;110:048301-1–048301-5. https://doi.org/10.1103/physrevlett.110.048301.Search in Google Scholar PubMed
88. Landers, J, Roeder, L, Salamon, S, Jamet, JP, Panine, P, Dozov, I, et al.. Particle–matrix interaction in cross-linked PAAm-hydrogels analyzed by Mössbauer spectroscopy. J Phys Chem C 2015;119:20642–8. https://doi.org/10.1021/acs.jpcc.5b03697.Search in Google Scholar
89. Lemaire, BJ, Davidson, P, Ferré, J, Jamet, JP, Panine, P, Dozov, I, et al.. Outstanding magnetic properties of nematic suspensions of goethite (alpha-FeOOH) nanorods. Phys Rev Lett 2002;88:12–125507. https://doi.org/10.1103/physrevlett.88.125507.Search in Google Scholar
90. Ding, H, Zhang, Y, Xu, S, Li, G. A wrinkle to sub-100 nm yolk/shell Fe3O4@SiO2 nanoparticles. Nano Research 2016;9:3632–43. https://doi.org/10.1007/s12274-016-1233-4.Search in Google Scholar
91. Meng, Q, Xiang, S, Zhang, K, Wang, M, Bu, X., Xue, P, et al.. A facile two-step etching method to fabricate porous hollow silica particles. J Colloid Interface Sci 2012;384:22–8. https://doi.org/10.1016/j.jcis.2012.06.043.Search in Google Scholar PubMed
92. Kalem, S. Synthesis of ammonium silicon fluoride cryptocrystals on silicon by dry etching. Appl Surf Sci 2004;236:336–41. https://doi.org/10.1016/j.apsusc.2004.05.008.Search in Google Scholar
93. Liu, Z, Chen, L, Ye, X, Yu, H, Li, J, Zeng, F. Selective basic etching of bifunctional core–shell composite particles for the fabrication of organic functionalized hollow mesoporous silica nanospheres. New J Chem 2016;40:825–31. https://doi.org/10.1039/c5nj02906f.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Non-collinear magnetism & multiferroicity: the perovskite case
- Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study
- Investigating the biological actions of some Schiff bases using density functional theory study
- Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review
- Protein modeling
- Advancements in cancer chemotherapy
- Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties
Articles in the same Issue
- Frontmatter
- Reviews
- Non-collinear magnetism & multiferroicity: the perovskite case
- Fluorescent styryl chromophores with rigid (pyrazole) donor and rigid (benzothiophenedioxide) acceptor – complete density functional theory (DFT), TDDFT and nonlinear optical study
- Investigating the biological actions of some Schiff bases using density functional theory study
- Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides: a review
- Protein modeling
- Advancements in cancer chemotherapy
- Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties