Home Biobleaching: An eco-friendly approach to reduce chemical consumption and pollutants generation
Article
Licensed
Unlicensed Requires Authentication

Biobleaching: An eco-friendly approach to reduce chemical consumption and pollutants generation

  • Amit Kumar EMAIL logo
Published/Copyright: December 8, 2020
Become an author with De Gruyter Brill

Abstract

The pulp and paper industry is known to be a large contributor to environmental pollution due to the huge consumption of chemicals and energy. Several chemicals including H2SO4, Cl2, ClO2, NaOH, and H2O2 are used during the bleaching process. These chemicals react with lignin and carbohydrates to generate a substantial amount of pollutants in bleach effluents. Environmental pressure has compelled the pulp and paper industry to reduce pollutant generation from the bleaching section. Enzymes have emerged as simple, economical, and eco-friendly alternatives for bleaching of pulp. The pretreatment of pulp with enzymes is termed as biobleaching or pre-bleaching. Different microbial enzymes such as xylanases, pectinases, laccases, manganese peroxidases (MnP), and lignin peroxidases are used for biobleaching. Xylanases depolymerize the hemicelluloses precipitated on pulp fiber surfaces and improves the efficiency of bleaching chemicals. Xylanase treatment also increases the pulp fibrillation and reduces the beating time of the pulp. Pectinases hydrolyze pectin available in the pulp fibers and improve the papermaking process. Laccase treatment is found more effective along with mediator molecules (as a laccase-mediator system). Biobleaching of pulp results in the superior quality of pulp along with lower consumption of chlorine-based chemicals and lower generation of adsorbable organic halidesadsorbable organic halides (AOX. An enzyme pretreatment reduces the kappa number of pulp and improves ISO brightness significantly. Better physical strength properties and pulp viscosity have also been observed during biobleaching of pulp.

References

1. Khambhaty Y, Akshaya R, Rama Suganya C, Sreeram KJ, Raghava Rao J. A logical and sustainable approach towards bamboo pulp bleaching using xylanase from Aspergillus nidulans. Int J Biol Macromol. 2018;118:452–9.10.1016/j.ijbiomac.2018.06.100Search in Google Scholar

2. Kumar A, Gautam A, Dutt D, Yadav M, Sehrawat N, Kumar P. Applications of microbial technology in the pulp and paper industry. In: Kumar V, Singh G, Aggarwa N, editors. Microbiology and biotechnology for a sustainable environment. New York, USA: Nova Science Publishers, Inc., 2017:185–206.10.1007/978-981-10-4041-2Search in Google Scholar

3. Ibarra D, Camarero S, Romero J, Martínez MJ, Martínez AT. Integrating laccase–mediator treatment into an industrial-type sequence for totally chlorine-free bleaching of eucalypt kraft pulp. J Chem Technol Biotechnol. 2006;81:1159–65.10.1002/jctb.1485Search in Google Scholar

4. Sharma N, Bhardwaj NK, Singh RB. Environmental issues of pulp bleaching and prospects of peracetic acid pulp bleaching: a review. J Clean Prod. 2020;256:120338.10.1016/j.jclepro.2020.120338Search in Google Scholar

5. Ali M, Sreekrishnan TR. Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res. 2001;5:175–96.10.1016/S1093-0191(00)00055-1Search in Google Scholar

6. Singh G, Arya SK. Utility of laccase in pulp and paper industry: a progressive step towards the green technology. Int J Biol Macromol. 2019;134:1070–84.10.1016/j.ijbiomac.2019.05.168Search in Google Scholar

7. Monje PG, González-García S, Moldes D, Vidal T, Romero J, Moreira MT, Feijoó G. Biodegradability of kraft mill TCF biobleaching effluents: application of enzymatic laccase-mediator system. Water Res. 2010;44:2211–20.10.1016/j.watres.2009.12.047Search in Google Scholar

8. Raghuveer S. Adoption of cleaner technology by ECF bleaching to face the future environmental challenges. Ippta J. 2002;14:17–19.Search in Google Scholar

9. Shatalov AA, Pereira H. Impact of hexenuronic acids on xylanase-aided bio-bleaching of chemical pulps. Bioresour Technol. 2009;100:3069–75.10.1016/j.biortech.2009.01.020Search in Google Scholar

10. Anupam K, Deepika, Swaroop V, Lal PS. Antagonistic, synergistic and interaction effects of process parameters during oxygen delignification of Melia dubia kraft pulp. J Clean Prod. 2018;199:420–30.10.1016/j.jclepro.2018.07.125Search in Google Scholar

11. Roncero MB, Torres AL, Colom JF, Vidal T. TCF bleaching of wheat straw pulp using ozone and xylanase.: part B: kinetic studies. Bioresour Technol. 2003;87:315–23.10.1016/S0960-8524(02)00225-0Search in Google Scholar

12. Tripathi SK, Bhardwaj NK, Ghatak HR. Additives to decrease cellulose chain scission during ozone bleaching of wheat straw pulp. Nord Pulp Pap Res J. 2018;33:430–8.10.1515/npprj-2018-3048Search in Google Scholar

13. Shatalov AA, Pereira H. Arundo donax L. reed: new perspectives for pulping and bleaching. 5. Ozone -based TCF bleaching of organosolv pulps. Bioresour Technol. 2008;99:472–8.10.1016/j.biortech.2007.01.014Search in Google Scholar PubMed

14. Tripathi S, Sharma N, Alam I, Bhardwaj NK. Effectiveness of different green chemistry approaches during mixed hardwood bamboo pulp bleaching and their impact on environment. Int J Environ Sci Technol. 2019;16:4327–38.10.1007/s13762-018-1887-4Search in Google Scholar

15. Dence C, Reeve DW. The technology of chemical pulp bleaching. In: CW D, editor. Pulp bleaching, principles and practice. Atlanta, USA: TAPPI press, 1996:213–443.Search in Google Scholar

16. Hubbe MA, Rojas OJ, Lucia LA, Sain M. Cellulosic nanocomposites: a review. BioResources. 2008;3:929–80.10.15376/biores.3.3.929-980Search in Google Scholar

17. Gautam A, Kumar A, Dutt D. Production and characterization of cellulase-free xylanase by aspergillus flavus ARC-12 and its application in pre-bleaching of ethanol-soda pulp of Eulaliopsis binata. Res J Biotechnol. 2017;12:63–71.Search in Google Scholar

18. Roy M, Chakrabarti SK, Bharadwaj NK, Chandra S, Kumar S, Singh S, Bajpai PK, Jauhari MB. Generation of chlorinated organic material in Eucalyptus pulp bleaching using different bleaching sequences. J Sci Ind Res. 2003;62:070–713.Search in Google Scholar

19. Lal M, Dutt D, Tyagi CH, Kaur H, Kumar A. Bio-conventional bleaching of kraft-AQ pulp of A. cadamba by crude xylanases from Coprinellus disseminatus MLK-03 and effect of residual enzyme on effluent load. BioResources. 2011;6:1019–28.10.15376/biores.6.2.1019-1028Search in Google Scholar

20. Norseth T. Industrial view points on cancer caused by metals as an occupational disease. In: Hiatt HH, Watson JD, Winston JA, editors. Origin of human cancer. cold spring harbor conferences on cell proliferation. New York: Cold Spring Harbor Laboratory, 1997: 159.Search in Google Scholar

21. Singh S, Dutt D, Tyagi CH, Upadhyaya JS. Bio-conventional bleaching of wheat straw soda–AQ pulp with crude xylanases from SH-1 NTCC-1163 and SH-2 NTCC-1164 strains of Coprinellus disseminatus to mitigate AOX generation. N Biotechnol. 2011;28:47–57.10.1016/j.nbt.2010.06.005Search in Google Scholar PubMed

22. Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater—a review. Sci Total Environ. 2004;333:37–58.10.1016/j.scitotenv.2004.05.017Search in Google Scholar PubMed

23. Raj A, Kumar S, Singh SK, Prakash J. Production and purification of xylanase from alkaliphilic Bacillus licheniformis and its pretreatment of eucalyptus kraft pulp. Biocatal Agric Biotechnol. 2018;15:199–209.10.1016/j.bcab.2018.06.018Search in Google Scholar

24. Chaurasia SK, Bhardwaj NK. Biobleaching - An ecofriendly and environmental benign pulp bleaching technique: A review. J Carbohydr Chem. 2019;38:87–108.10.1080/07328303.2019.1581888Search in Google Scholar

25. Battan B, Sharma J, Dhiman SS, Kuhad RC. Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enzyme Microb Technol. 2007;41:733–9.10.1016/j.enzmictec.2007.06.006Search in Google Scholar

26. Viikari I, Ranua M, Kantelinen A, Sundquist J, Lino M. Bleaching with enzyme. In: International conference on biotechnology in the pulp and paper Industry. Stockholm, Sweden, 1986:67–9.Search in Google Scholar

27. Saleem M, Tabassum MR, Yasmin R, Imran M. Potential of xylanase from thermophilic Bacillus sp. XTR-10 in biobleaching of wood kraft pulp. Int Biodeterior Biodegradation. 2009;63:1119–24.10.1016/j.ibiod.2009.09.009Search in Google Scholar

28. Paice MG, Bernier R, Jr, Jurasek L. Viscosity-enhancing bleaching of hardwood kraft pulp with xylanase from a cloned gene. Biotechnol Bioeng. 1988;32:235–9.10.1002/bit.260320214Search in Google Scholar

29. Walia A, Guleria S, Mehta P, Chauhan A, Parkash J. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech. 2017;7:11.10.1007/s13205-016-0584-6Search in Google Scholar

30. Kumar A, Yadav M, Tiruneh W. Debarking, pitch removal and retting: role of microbes and their enzymes. Phys Sci Rev. 2020;1 (ahead-of-print). DOI:10.1515/psr-2019-0048.Search in Google Scholar

31. Kumar A, Dutt D, Gautam A. Production of crude enzyme from Aspergillus nidulans AKB-25 using black gram residue as the substrate and its industrial applications. J Genet Eng Biotechnol. 2016;14:107–18.10.1016/j.jgeb.2016.06.004Search in Google Scholar

32. Gautam A, Kumar A, Dutt D. Production of cellulase-free xylanase by Aspergillus flavus ARC- 12 using pearl millet stover as the substrate under solid-state fermentation. J Adv Enzym Res. 2015;1:1–9.Search in Google Scholar

33. Gangwar AK, Prakash NT, Prakash R. Applicability of microbial xylanases in paper pulp: a review. BioResource. 2014;9:3733–54.10.15376/biores.9.2.3733-3754Search in Google Scholar

34. Techapun C, Poosaran N, Watanabe M, Sasaki K. Thermostable and alkaline-tolerant microbial cellulase-free xylanases produced from agricultural wastes and the properties required for use in pulp bleaching bioprocesses: a review. Process Biochem. 2003;38:1327–40.10.1016/S0032-9592(02)00331-XSearch in Google Scholar

35. Sharma P, Sood C, Singh G, Capalash N. An eco-friendly process for biobleaching of eucalyptus kraft pulp with xylanase producing Bacillus halodurans. J Clean Prod. 2015;87:966–70.10.1016/j.jclepro.2014.09.083Search in Google Scholar

36. Khandeparkar R, Bhosle NB. Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresour Technol. 2007;98:897–903.10.1016/j.biortech.2006.02.037Search in Google Scholar

37. Kumar S, Haq I, Prakash J, Kumar S, Mishra S, Raj1 A. Purification, characterization and thermostability improvement of xylanase from Bacillus amyloliquefaciens and its application in pre-bleaching of kraft pulp. 3 Biotech. 2017;7:1–12.10.1007/s13205-017-0615-ySearch in Google Scholar

38. Dhillon A, Gupta JK, Jauhari BM, Khanna S. A cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Bioresour Technol. 2000;73:273–7.10.1016/S0960-8524(99)00116-9Search in Google Scholar

39. Chauhan S, Choudhury B, Singh SN, Ghosh P. Application of xylanase enzyme of Bacillus coagulans as a prebleaching agent on non-woody pulps. Process Biochem. 2006;41:226–31.10.1016/j.procbio.2005.06.003Search in Google Scholar

40. Lin XQ, Han SY, Zhang N, Hu H, Zheng SP, Ye YR, Lin Y. Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp. Enzyme Microb Technol. 2013;52:91–8.10.1016/j.enzmictec.2012.10.011Search in Google Scholar

41. Sharma D, Agrawal S, Dutt R, Ritu Y. Improved efficacy of ultrafiltered xylanase – pectinase concoction in biobleaching of plywood waste soda pulp. 3 Biotech. 2017;7:1–7.10.1007/s13205-017-0614-zSearch in Google Scholar

42. Bakri Y, Ammouneh H, Harba M, Akeed Y, Audi R, Peng LC. Xylanase production by a new Bacillus pumilus SY30A under solid state fermentation and its application in oil palm biomass pulp bleaching. J Sustain Sci Manag. 2016;11:49–56.Search in Google Scholar

43. Nagar S, Jain RK, Thakur VV, Gupta VK. Biobleaching application of cellulase poor and alkali stable xylanase from Bacillus pumilus SV-85S. 3 Biotech. 2013;3:277–85.10.1007/s13205-012-0096-ySearch in Google Scholar

44. Duarte MC, da Silva EC, Ponezi AN, Portugal EP, Vicente JR, Davanzo E. Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresour Technol. 2003;88:9–15.10.1016/S0960-8524(02)00270-5Search in Google Scholar

45. Garg G, Dhiman SS, Mahajan R, Kaur A, Sharma J. Bleach-boosting effect of crude xylanase from Bacillus stearothermophilus SDX on wheat straw pulp. N Biotechnol. 2011;28:58–64.10.1016/j.nbt.2010.07.020Search in Google Scholar PubMed

46. Ko CH, Tsai CH, Tu J, Yang BY, Hsieh DL, Jane WN, Shih TL. Identification of Paenibacillus sp. 2S-6 and application of its xylanase on biobleaching. Int Biodeterior Biodegradation. 2011;65:334–9.10.1016/j.ibiod.2010.12.006Search in Google Scholar

47. Ko CH, Lin ZP, Tu J, Tsai CH, Liu CC, Chen HT, Wang TP. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int Biodeterior Biodegradation. 2010;64:13–19.10.1016/j.ibiod.2009.10.001Search in Google Scholar

48. Gupta S, Bhushan B, Hoondal GS. Isolation, purification and characterization of xylanasefrom Staphylococcus sp. SG-13 and its application in biobleaching of kraft pulp. J Appl Microbiol. 2000;88:325–34.10.1046/j.1365-2672.2000.00974.xSearch in Google Scholar PubMed

49. Martins MD, Guimarães MW, de Lima VA, Gaglioti AL, Da-Silva PR, Kadowaki MK, Knob A. Valorization of passion fruit peel by-product : Xylanase production and its potential as bleaching agent for kraft pulp. Biocatal Agric Biotechnol. 2018 August;16:172–80.10.1016/j.bcab.2018.07.033Search in Google Scholar

50. de Alencar Guimaraes NC, Sorgatto M, de Carvalho Peixoto-Nogueira S, Betini JH, Zanoelo FF, Marques MR, de Moraes MD, Giannesi GC. Bioprocess and biotechnology: effect of xylanase from Aspergillus niger and Aspergillus flavus on pulp biobleaching and enzyme production using agroindustrial residues as substract. Springerplus. 2013;2:380.10.1186/2193-1801-2-380Search in Google Scholar

51. Sridevi A, Sandhya A, Ramanjaneyulu G, Narasimha G, Devi PS. Biocatalytic activity of Aspergillus niger xylanase in paper pulp biobleaching. 3 Biotech. 2016;6:165.10.1007/s13205-016-0480-0Search in Google Scholar

52. Zhao J, Li X, Qu Y, Gao P. Xylanase pretreatment leads to enhanced soda pulping of wheat straw. Enzyme Microb Technol. 2002;30:734–40.10.1016/S0141-0229(02)00050-9Search in Google Scholar

53. Taneja K, Gupta S, Chander Kuhad R. Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol. 2002;85:39–42.10.1016/S0960-8524(02)00064-0Search in Google Scholar

54. Giannesi GC. Xylanase Production from Aspergillus japonicus var aculeatus: production using Agroindustrial Residues and Biobleaching Effect on Pulp. J Biocatal Biotransform. 2013;2:1–6.10.4172/2324-9099.1000105Search in Google Scholar

55. Baraznenok VA, Becker EG, Ankudimova NV, Okunev NN. Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme Microb Technol. 1999;25:651–9.10.1016/S0141-0229(99)00091-5Search in Google Scholar

56. Agnihotri S, Dutt D, Kumar A. Effect of xylanases from C. disseminatus SW-1 NTCC-1165 on pulp and effluent characteristics during CEHH bleaching of soda-AQ bagasse pulp. Int J Sci Technol. 2012;1:346–57.Search in Google Scholar

57. Medeiros RG, Silva LP, Azevedo RB, Silva FG, Filho EX. The use of atomic force microscopy as a tool to study the effect of a xylanase from Humicola grisea var. thermoidea in kraft pulp bleaching. Enzyme Microb Technol. 2007;40:723–31.10.1016/j.enzmictec.2006.06.004Search in Google Scholar

58. Silva NF, Simões MR, Knob A, De Moraes SS, Henn C, Da ConceiçãO Silva JL, Simão RD, Maller A, Kadowaki MK. Improvement in the bleaching of kraft pulp with xylanase from Penicillium crustosum FP 11 isolated from the Atlantic forest. Biocatal Biotransform. 2016;34:119–27.10.1080/10242422.2016.1212849Search in Google Scholar

59. Boruah P, Dowarah P, Hazarika R, Yadav A, Barkakati P, Goswami T. Xylanase from Penicillium meleagrinum var. viridiflavum – a potential source for bamboo pulp bleaching. J Clean Prod. 2016;116:259–67.10.1016/j.jclepro.2015.12.024Search in Google Scholar

60. Medeiros RG, da Silva Jr FG, Báo SN, Hanada R, Ferreira Filho EX Application of xylanases from Amazon Forest fungal species in bleaching of eucalyptus kraft pulps. Brazilian Arch Biol Technol. 2007;50:231–8.10.1590/S1516-89132007000200008Search in Google Scholar

61. Terrasan CR, Temer B, Sarto C, Silva Júnior FG, Carmona EC. Xylanase and β-Xylosidase from Penicillium janczewskii: production, physico-chemical properties, and application of the crude extract to pulp biobleaching. BioResources. 2013;8:1292–305.10.15376/biores.8.1.1292-1305Search in Google Scholar

62. Gautam A, Kumar A, Bharti AK, Dutt D. Rice straw fermentation by Schizophyllum commune ARC-11 to produce high level of xylanase for its application in pre-bleaching. J Genet Eng Biotechnol. 2018;16:693–701.10.1016/j.jgeb.2018.02.006Search in Google Scholar PubMed PubMed Central

63. Sila T, De Jesus L, Moretto E, Stephanie N, Nunes S, De Oliva P. Biobleaching of Kraft pulp using fungal xylanases produced from sugarcane straw and the subsequent decrease of chlorine consumption. Biomass Bioenerg. 2019;121:22–7.10.1016/j.biombioe.2018.12.014Search in Google Scholar

64. Nathan VK, Rani ME, Rathinasamy G, Dhiraviam KN. Low molecular weight xylanase from Trichoderma viride VKF3 for bio-bleaching of newspaper pulp. BioResource. 2017;12:5264–78.10.15376/biores.12.3.5264-5278Search in Google Scholar

65. Fortkamp D, Knob A. High xylanase production by Trichoderma viride using pineapple peel as substrate and its apllication in pulp biobleaching. African J Biotechnol. 2014;13:2248–59.10.5897/AJB2013.13479Search in Google Scholar

66. Savitha S, Sadhasivam S, Swaminathan K. Modification of paper properties by the pretreatment of wastepaper pulp with Graphium putredinis, Trichoderma harzianum and fusant xylanases. Bioresour Technol. 2009;100:883–9.10.1016/j.biortech.2008.07.014Search in Google Scholar PubMed

67. Ziaie-Shirkolaee Y, Talebizadeh A, Soltanali S. Comparative study on application of T.lanuginosus SSBP xylanase and commercial xylanase on biobleaching of non wood pulps. Bioresour Technol. 2008;99:7433–7.10.1016/j.biortech.2008.02.032Search in Google Scholar PubMed

68. Bokhari SA, Rajoka MI, Javaid A, Shafiq-ur-Rehman, Ishtiaq-ur-Rehman, Latif F. Novel thermodynamics of xylanase formation by a 2-deoxy-d-glucose resistant mutant of Thermomyces lanuginosus and its xylanase potential for biobleachability. Bioresour Technol. 2010;101:2800–8.10.1016/j.biortech.2009.10.072Search in Google Scholar PubMed

69. Kumar KS, Manimaran A, Permaul K, Singh S. Production of β-xylanase by a Thermomyces lanuginosus MC 134 mutant on corn cobs and its application in biobleaching of bagasse pulp. J Biosci Bioeng. 2009;107:494–8.10.1016/j.jbiosc.2008.12.020Search in Google Scholar PubMed

70. Li X, Sun B, Zhao J, Lv Y, Song H, Li E, Zhu Y. Production and improved bleaching abilities of a thermostable xylanase from a newly isolated Streptomyces chartreusis strain. African J Biotechnol. 2011;10:14132–42.10.5897/AJB10.2360Search in Google Scholar

71. Ninawe S, Kuhad RC. Bleaching of wheat straw-rich soda pulp with xylanase from a thermoalkalophilic Streptomyces cyaneus SN32. Bioresour Technol. 2006;97:2291–5.10.1016/j.biortech.2005.10.035Search in Google Scholar

72. Wu H, Cheng X, Zhu Y, Zeng W, Chen G, Liang Z. Purification and characterization of a cellulase-free, thermostable endo-xylanase from Streptomyces griseorubens LH-3 and its use in biobleaching on eucalyptus kraft pulp. J Biosci Bioeng. 2018;125:46–51.10.1016/j.jbiosc.2017.08.006Search in Google Scholar

73. Beg QK, Bhushan B, Kapoor M, Hoondal GS. Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme Microb Technol. 2000;27:459–66.10.1016/S0141-0229(00)00231-3Search in Google Scholar

74. Patel RN, Grabski AC, Jeffries TW. Chromophore release from kraft pulp by purified Streptomyces roseiscleroticus xylanases. Appl Microbiol Biotechnol. 1993;39:405–12.10.1007/BF00192102Search in Google Scholar

75. Kaur A, Mahajan R, Singh A, Garg G, Sharma J. Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresour Technol. 2010;101:9150–5.10.1016/j.biortech.2010.07.020Search in Google Scholar PubMed

76. Yang Z, Xu S, Ma X, Wang S. Characterization and acetylation behavior of bamboo pulp. Wood Sci Technol. 2008;42:621–32.10.1007/s00226-008-0194-5Search in Google Scholar

77. Dhiman SS, Garg G, Mahajan R, Garg N, Sharma J. Single lay out” and “mixed lay out” enzymatic processes for bio-bleaching of kraft pulp. Bioresour Technol. 2009;100:4736–41.10.1016/j.biortech.2009.04.059Search in Google Scholar PubMed

78. Agrawal S, Dutt R, Mahajan R. Synergistic effect of xylano-pectinolytic enzymes produced by a bacterial isolate in bleaching of plywood industrial waste. J Clean Prod. 2016;118:5487812.10.1016/j.jclepro.2016.01.067Search in Google Scholar

79. Thornton JW, Eckerman SC, Ekman RO, Holmbom BR. Treatment of alkaline bleached mechanical wood pulp with pectinase. US Patent. 1996;5487812A:1–12.Search in Google Scholar

80. Ahlawat S, Battan B, Dhiman SS, Sharma J, Mandhan RP. Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp. J Ind Microbiol Biotechnol. 2007;34:763–70.10.1007/s10295-007-0251-3Search in Google Scholar PubMed

81. Sharma A, Jain KK, Srivastava A, Shrivastava B, Thakur VV, Jain RK, Kuhad RC. Potential of in situ SSF laccase produced from Ganoderma lucidum RCK 2011 in biobleaching of paper pulp. Bioprocess Biosyst Eng. 2019;42:367–77.10.1007/s00449-018-2041-xSearch in Google Scholar PubMed

82. Maalej-Achouri I, Guerfali M, Romdhane I-B, Gargouri A, Belghith H. The effect of Talaromyces thermophilus cellulase-free xylanase and commercial laccase on lignocellulosic components during the bleaching of kraft pulp. Int Biodeterior Biodegradation. 2012;75:43–8.10.1016/j.ibiod.2012.04.015Search in Google Scholar

83. Li X, She Y, Sun B, Song H, Zhu Y, Lv Y, Song H. Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochem Eng J. 2010;52:71–8.10.1016/j.bej.2010.07.006Search in Google Scholar

84. Andreu G, Vidal T. An improved TCF sequence for biobleaching kenaf pulp: influence of the hexenuronic acid content and the use of xylanase. Bioresour Technol. 2014;152:253–8.10.1016/j.biortech.2013.11.014Search in Google Scholar

85. Roncero MB, Torres AL, Colom JF, Vidal T. Effects of xylanase treatment on fibre morphology in totally chlorine free bleaching (TCF) of Eucalyptus pulp. Process Biochem. 2000;36:45–50.10.1016/S0032-9592(00)00178-3Search in Google Scholar

86. Hamedi J, Vaez Fakhri A, Mahdavi S. Biobleaching of mechanical paper pulp using Streptomyces rutgersensis UTMC 2445 isolated from a lignocellulose-rich soil. J Appl Microbiol. 2020;128:161–70.10.1111/jam.14489Search in Google Scholar

87. Pradeep GC, Cho SS, Choi YH, Choi YS, Jee JP, Seong CN, Yoo JC. An extremely alkaline mannanase from Streptomyces sp. CS428 hydrolyzes galactomannan producing series of mannooligosaccharides. World J Microbiol Biotechnol. 2016;32:84.10.1007/s11274-016-2040-5Search in Google Scholar

88. Regmi S, Yoo HY, Choi YH, Choi YS, Yoo JC, Kim SW. Prospects for bio-industrial application of an extremely alkaline mannanase from Bacillus subtilis subsp. inaquosorum CSB31. Biotechnol J. 2017;12:1700113.10.1002/biot.201700113Search in Google Scholar

89. Gübitz GM, Schnitzhofer W, Balakrishnan H, Steiner W. Two mannanases from Sclerotium rolfsii in total chlorine free bleaching of softwood kraft pulp. J Biotechnol. 1996;50:181–8.10.1016/0168-1656(96)01563-5Search in Google Scholar

90. Yang M, Cai J, Wang C, Du X, Lin J. Characterization of endo-β-mannanase from Enterobacter ludwigii MY271 and application in pulp industry. Bioprocess Biosyst Eng. 2017;40:35–43.10.1007/s00449-016-1672-zSearch in Google Scholar PubMed

91. Chauhan PS, Soni SK, Sharma P, Saini A, Gupta N. A mannanase from Bacillus nealsonii PN-11: statistical optimization of production and application in biobleaching of pulp in combination with xylanase. Int J Pharm Bio Sci. 2014;5:978–82.Search in Google Scholar

92. Kinnunen A, Maijala, Pekka, Paivi J, Arvinen Hatakka A. Improved efficiency in screening for lignin -modifying peroxidases and laccases of basidiomycetes. Curr Biotechnol. 2017;6:105–15.10.2174/2211550105666160330205138Search in Google Scholar

93. Dwivedi P, Vivekanand V, Pareek N. Bleach enhancement of mixed wood pulp by xylanase – laccase concoction derived through co-culture strategy. Appl Biochem Biotechnol. 2010;160:255–68.10.1007/s12010-009-8654-4Search in Google Scholar PubMed

94. López-Abelairas M, Álvarez Pallín M, Salvachúa D, Lú-Chau T, Martínez MJ, Lema JM. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production. Bioprocess Biosyst Eng. 2013;36:1251–60.10.1007/s00449-012-0869-zSearch in Google Scholar PubMed

95. Damián-Robles RM, Castro-Montoya AJ, Saucedo-Luna J, Vázquez-Garcidueñas MS, Arredondo-Santoyo M, Vázquez-Marrufo G. Characterization of ligninolytic enzyme production in white-rot wild fungal strains suitable for kraft pulp bleaching. 3 Biotech. 2017;7:319.10.1007/s13205-017-0968-2Search in Google Scholar PubMed PubMed Central

96. Kumar A, Gautam A, Dutt D. Bio-pulping: an energy saving and environment-friendly approach. Phys Sci Rev. 2020;5:20190043. DOI:10.1515/psr-2019-0043.Search in Google Scholar

97. Orozco Colonia BS, Lorenci Woiciechowski A, Malanski R, Junior Letti LA, Soccol CR. Pulp improvement of oil palm empty fruit bunches associated to solid-state biopulping and biobleaching with xylanase and lignin peroxidase cocktail produced by Aspergillus sp. LPB-5. Bioresour Technol. 2019;285:1–8.10.1016/j.biortech.2019.121361Search in Google Scholar PubMed

98. Asgher M, Iqbal HM, Irshad M. Characterization of purified and xerogel immobilized novel lignin peroxidase produced from Trametes versicolor IBL-04 using solid state medium of corncobs. BMC Biotechnol. 2012;12:46.10.1186/1472-6750-12-46Search in Google Scholar PubMed PubMed Central

99. Lalwani G, Xing W, Sitharaman B. Enzymatic degradation of oxidized and reduced graphene nanoribbons by lignin peroxidase. J Mater Chem B. 2014;2:6354–62.10.1039/C4TB00976BSearch in Google Scholar PubMed PubMed Central

100. Ozer A, Uzuner U, Guler HI, Ay Sal F, Belduz AO, Deniz I, Canakci S. Improved pulp bleaching potential of Bacillus subtilis WB800 through overexpression of three lignolytic enzymes from various bacteria. Biotechnol Appl Biochem. 2018;65:560–71.10.1002/bab.1637Search in Google Scholar PubMed

101. de Carvalho ME, Monteiro MC, Bon EP, Sant’Anna GL. Production and characterization of Phanerochaete chrysosporium lignin peroxidases for pulp bleaching. In: Finkelstein M, Davison BH, editors. Biotechnology for fuels and chemicals. Totowa, NJ: Humana Press, 1998:955–66.10.1007/978-1-4612-1814-2_89Search in Google Scholar

102. Goodwin DC, Aust SD, Grover TA. Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry. 1995;34:5060–5.10.1021/bi00015a017Search in Google Scholar PubMed

103. Arbeloa M, De Leseleuc J, Goma G, Pommier JC. An evaluation of the potential of lignin peroxidases to improve pulps. Tappi J. 1992;75:215–21.Search in Google Scholar

104. Zhang H, Zhang J, Zhang X, Geng A. Purification and characterization of a novel manganese peroxidase from white-rot fungus Cerrena unicolor BBP6 and its application in dye decolorization and denim bleaching. Process Biochem. 2018;66:222–9.10.1016/j.procbio.2017.12.011Search in Google Scholar

105. Kuwahara M, Glenn JK, Morgan MA, Gold MH. Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 1984;169:247–50.10.1016/0014-5793(84)80327-0Search in Google Scholar

106. Bermek H, Li K, Eriksson K-E. Studies on mediators of manganese peroxidase for bleaching of wood pulps. Bioresour Technol. 2002;85:249–52.10.1016/S0960-8524(02)00132-3Search in Google Scholar

107. Wariishi H, Valli K, Renganathan V, Gold MH. Thiol-mediated oxidation of nonphenolic lignin model compounds by manganese peroxidase of Phanerochaete chrysosporium. J Biol Chem. 1989;264:14185–91.10.1016/S0021-9258(18)71660-8Search in Google Scholar

108. Kaneko R, Iimori T, Miyawaki S, Machida M, Murakami K. Biobleaching with manganese peroxidase purified from the pulp bleaching fungus SKB-1152. Biosci Biotechnol Biochem. 1995;59:1584–5.10.1271/bbb.59.1584Search in Google Scholar

109. Kondo R, Harazono K, Sakai K. Bleaching of hardwood kraft pulp with manganese peroxidase secreted from Phanerochaete sordida YK-624. Appl Environ Microbiol. 1994;60:4359–63.10.1128/aem.60.12.4359-4363.1994Search in Google Scholar PubMed PubMed Central

110. Masarin F, Norambuena M, Ramires HO, Demuner BJ, Pavan PC, Ferraz A. Manganese peroxidase and biomimetic systems applied to in vitro lignin degradation in Eucalyptus grandis milled wood and kraft pulps. J Chem Technol Biotechnol. 2016;91:1422–30.10.1002/jctb.4739Search in Google Scholar

111. Loureiro PE, Evtuguin DV, Carvalho MG. The final bleaching of eucalypt kraft pulps with hydrogen peroxide: relationship with industrial ECF bleaching history and cellulose degradation. J Chem Technol Biotechnol. 2011;86:381–90.10.1002/jctb.2527Search in Google Scholar

112. Paice MG, Reid ID, Bourbonnais R, Archibald FS, Jurasek L. Manganese peroxidase, produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Appl Environ Microbiol. 1993;59:260–5.10.1128/aem.59.1.260-265.1993Search in Google Scholar PubMed PubMed Central

113. Sasaki T, Kajino T, Li B, Sugiyama H, Takahashi H. New pulp biobleaching system involving manganese peroxidase immobilized in a silica support with controlled pore sizes. Appl Environ Microbiol. 2001;67:2208–12.10.1128/AEM.67.5.2208-2212.2001Search in Google Scholar PubMed PubMed Central

114. Moldes D, Cadena EM, Vidal T. Biobleaching of eucalypt kraft pulp with a two laccase-mediator stages sequence. Bioresour Technol. 2010;101:6924–9.10.1016/j.biortech.2010.03.127Search in Google Scholar

115. Mukesh Y, Nirmala S, Amit K. Microbial laccases in food processing industry: current status and future perspectives. Res J Biotechnol. 2018;13:108–13.Search in Google Scholar

116. Riva S. Laccases: blue enzymes for green chemistry. Trends Biotechnol. 2006;24:219–26.10.1016/j.tibtech.2006.03.006Search in Google Scholar

117. Sondhi S, Sharma P, George N. An extracellular thermo-alkali-stable laccase from Bacillus tequilensis SN4, with a potential to biobleach softwood pulp. 3 Biotech. 2015;5:175–85.10.1007/s13205-014-0207-zSearch in Google Scholar

118. Santhanam N, Vivanco J, Decker S, Reardon K. Expression of industrially relevant laccases: prokaryotic style. Trends Biotechnol. 2011;29:480–9.10.1016/j.tibtech.2011.04.005Search in Google Scholar

119. Moldes D, Díaz M, Tzanov T, Vidal T. Comparative study of the efficiency of synthetic and natural mediators in laccase-assisted bleaching of eucalyptus kraft pulp. Bioresour Technol. 2008;99:7959–65.10.1016/j.biortech.2008.04.002Search in Google Scholar

120. Ozer A, Sal FA, Belduz AO, Kirci H, Canakci S. Use of feruloyl esterase as laccase-mediator system in paper bleaching. Appl Biochem Biotechnol. 2020;190:721–31.10.1007/s12010-019-03122-xSearch in Google Scholar

121. Kawai S, Umezawa T, Higuchi T. Degradation mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys. 1988;262:99–110.10.1016/0003-9861(88)90172-5Search in Google Scholar

122. Bourbonnais R, Paice MG. Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett. 1990;267:99–102.10.1016/0014-5793(90)80298-WSearch in Google Scholar

123. Xu G, Wang X, Hu J. Biobleaching of wheat straw pulp using laccase and xylanase. BioResources. 2013;8:3181–8.10.15376/biores.8.3.3181-3188Search in Google Scholar

124. Christopher LP, Yao B, Ji Y. Lignin biodegradation with laccase-mediator system. Front Energy Res. 2014;2:12.10.3389/fenrg.2014.00012Search in Google Scholar

125. Fillat U, Roncero MB. Optimization of laccase–mediator system in producing biobleached flax pulp. Bioresour Technol. 2010;101:181–7.10.1016/j.biortech.2009.07.020Search in Google Scholar PubMed

126. Valls C, Molina S, Vidal T, José C, Colom JF, Martínez ÁT, Gutierrez A, Roncero MB. Influence of operation conditions on laccase-mediator removal of sterols from eucalypt pulp. Process Biochem. 2009;44:1032–8.10.1016/j.procbio.2009.05.002Search in Google Scholar

127. Valls C, Vidal T, Roncero MB. The role of xylanases and laccases on hexenuronic acid and lignin removal. Process Biochem. 2010;45:425–30.10.1016/j.procbio.2009.10.015Search in Google Scholar

128. Camarero S, Ibarra D, Martínez ÁT, Romero J, Gutiérrez A, Del Río JC. Paper pulp delignification using laccase and natural mediators. Enzyme Microb Technol. 2007;40:1264–71.10.1016/j.enzmictec.2006.09.016Search in Google Scholar

129. Gutiérrez A, Rencoret J, Ibarra D, Molina S, Camarero S, Romero J, Del Río JC, Martínez ÁT. Removal of lipophilic extractives from paper pulp by laccase and lignin -derived phenols as natural mediators. Environ Sci Technol. 2007;41:4124–9.10.1021/es062723+Search in Google Scholar PubMed

130. Sharma A, Thakur VV, Shrivastava A, Jain RK, Mathur RM, Gupta R, Kuhad RC. Xylanase and laccase based enzymatic kraft pulp bleaching reduces adsorbable organic halogen (AOX) in bleach effluents: a pilot scale study. Bioresour Technol. 2014;169:96–102.10.1016/j.biortech.2014.06.066Search in Google Scholar PubMed

131. Salles BC, Medeiros RG, Báo SN, Silva FG, Filho EX. Effect of cellulase-free xylanases from Acrophialophora nainiana and Humicola grisea var. thermoidea on eucalyptus kraft pulp. Process Biochem. 2005;40:343–9.10.1016/j.procbio.2004.01.008Search in Google Scholar

132. Lal M, Dutt D, Tyagi CH. Bio-conventional bleaching of kadam kraft-AQ pulp by thermo-alkali-tolerant xylanases from two strains of Coprinellus disseminatus for extenuating adsorbable organic halides and improving strength with optical properties and energy conservation. World J Microbiol Biotechnol. 2012;28:1375–87.10.1007/s11274-011-0937-6Search in Google Scholar PubMed

133. Krahe M, Antranikian G, Märkl H. Fermentation of extremophilic microorganisms. FEMS Microbiol Rev. 1996;18:271–85.10.1111/j.1574-6976.1996.tb00243.xSearch in Google Scholar

134. Dhiman SS, Sharma J, Battan B. Pre-treatment processing of fabrics by alkalo-thermophilic xylanase from Bacillus stearothermophilus SDX. Enzyme Microb Technol. 2008;43:262–9.10.1016/j.enzmictec.2008.03.016Search in Google Scholar

135. Betini JH, Michelin M, Peixoto-Nogueira SC, Jorge JA, Terenzi HF, Polizeli ML. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst Eng. 2009;32:819–24.10.1007/s00449-009-0308-ySearch in Google Scholar

136. Valls C, Gallardo O, Vidal T, Pastor FI, Díaz P, Roncero MB. New xylanases to obtain modified eucalypt fibres with high-cellulose content. Bioresour Technol. 2010;101:7439–45.10.1016/j.biortech.2010.04.085Search in Google Scholar

137. Sandrim VC, Rizzatti AC, Terenzi HF, Jorge JA, Milagres AM, Polizeli ML. Purification and biochemical characterization of two xylanases produced by Aspergillus caespitosus and their potential for kraft pulp bleaching. Process Biochem. 2005;40:1823–8.10.1016/j.procbio.2004.06.061Search in Google Scholar

138. Sharma A, Adhikari S, Satyanarayana T. Alkali-thermostable and cellulase-free xylanase production by an extreme thermophile Geobacillus thermoleovorans. World J Microbiol Biotechnol. 2007;23:483–90.10.1007/s11274-006-9250-1Search in Google Scholar

139. Khonzue P, Laothanachareon T, Rattanaphan N, Tinnasulanon P, Apawasin S, Paemanee A, Ruanglek V, Tanapongpipat S, Champreda V, Eurwilaichitr L. Optimization of xylanase production from Aspergillus niger for biobleaching of eucalyptus pulp. Biosci Biotechnol Biochem. 2011;75:1129–34.10.1271/bbb.110032Search in Google Scholar

140. Wong KK, Martin LA, Gama FM, Saddler JN, de Jong E. Bleach boosting and direct brightening by multiple xylanase treatments during peroxide bleaching of kraft pulps. Biotechnol Bioeng. 1997;54:312–8.10.1002/(SICI)1097-0290(19970520)54:4<312::AID-BIT3>3.0.CO;2-NSearch in Google Scholar

141. Valls C, Roncero MB. Antioxidant property of TCF pulp with a high hexenuronic acid (HexA) content. Holzforschung. 2013;67:257–63.10.1515/hf-2012-0114Search in Google Scholar

142. Li J, Gellerstedt G. On the structural significance of the kappa number measurement. Nord Pulp Pap Res J. 1998;13:153–8.10.3183/npprj-1998-13-02-p153-158Search in Google Scholar

143. Vuorinen T, Fagerström P, Buchert J, Tenkanen M, Teleman A. Selective hydrolysis of hexenuronic acid groups and its application in ECF and TCF bleaching of kraft pulps. J Pulp Pap Sci. 1999;25:155–62.Search in Google Scholar

144. Allison RW, Timonen O, McGrouther KG, Suckling ID. Hexenuronic acid in kraft pulps from radiata pine. Appita J. 1999;52:448–52.Search in Google Scholar

145. Chai X-S, Zhu J, Luo Q, Yoon S-H. The fate of hexenuronic acid groups during kraft pulping of hardwoods. J Pulp Paper Sci. 2001;27:1–5.Search in Google Scholar

146. Lal M, Dutt D, Kumar A, Gautam A. Bio-bleaching of Anthocephalus cadamba kraft pulp through direct fungal treatment by FEQP sequence. Br Biotechnol J. 2015;8:1–13.10.9734/BBJ/2015/18845Search in Google Scholar

147. Manji AH. Extended usage of xylanase enzyme to enhance the bleaching of softwood kraft pulp. Tappi J. 2006;5:23–6.Search in Google Scholar

148. Bajpai P. Biobleaching. Bajpai P. In: Biotechnology for pulp and paper processing, USA: Springer, 2018:159–213.10.1007/978-981-10-7853-8_10Search in Google Scholar

149. Zhou Z, Jääskeläinen A-S, Adorjan I, Potthast A, Kosma P, Vuorinen T. Brightness reversion of eucalyptus kraft pulp: effect of carbonyl groups generated by hypochlorous acid oxidation. Holzforschung. 2011;65:289–94.10.1515/hf.2011.047Search in Google Scholar

150. Gangwar AK, Prakash NT, Prakash R. An eco-friendly approach: incorporating a xylanase stage at various places in ECF and chlorine-based bleaching of eucalyptus pulp. BioResources. 2016;11:5381–8.10.15376/biores.11.2.5381-5388Search in Google Scholar

151. Boruah P, Sarmah P, Das PK, Goswami T. Exploring the lignolytic potential of a new laccase producing strain Kocuria sp. PBS-1 and its application in bamboo pulp bleaching. Int Biodeterior Biodegradation. 2019;143:104726.10.1016/j.ibiod.2019.104726Search in Google Scholar

152. Nie S, Wang S, Qin C, Yao S, Ebonka JF, Song X, Li K. Removal of hexenuronic acid by xylanase to reduce adsorbable organic halides formation in chlorine dioxide bleaching of bagasse pulp. Bioresour Technol. 2015;196:413–7.10.1016/j.biortech.2015.07.115Search in Google Scholar PubMed

153. Björklund M, Germgard U, Jour P, Forsström A. AOX formation in ECF bleaching at different kappa numbers-influence of oxygen delignification and hexenuronic acid content. In: Pulping conference. 2002:20–4.Search in Google Scholar

154. Björklund M, Germgard U, Basta J. Formation of AOX and OCI in ECF bleaching of birch pulp. TAPPI J. 2004;3:7–12.Search in Google Scholar

155. Dai Y, Song X, Gao C, He S, Nie S, Qin C. Xylanase-aided chlorine dioxide bleaching of bagasse pulp to reduce AOX formation. BioResources. 2016;11:3204–14.10.15376/biores.11.2.3204-3214Search in Google Scholar

156. Torngren A, Ragnar M. Hexenuronic acid reactions in chlorine dioxide bleaching-aspects on in situ formation of molecular chlorine. Nord Pulp Pap Res J. 2002;17:179–82.10.3183/npprj-2002-17-02-p179-182Search in Google Scholar

157. Ventorim G, Colodette J, Gomes A, da Silva L. Kinetics of lignin and HexA reactions with chlorine dioxide, ozone, and sulfuric acid. Wood Fiber Sci. 2008;40:190–201.Search in Google Scholar

158. Borges MT, Silva CM, Colodette JL, Alves LB, Rodrigues GR, Lana LC, Tesser F. Effect of eucalyptus kraft pulp enzyme bleaching on effluent quality and bio-treatability. Pulp Pap Canada. 2010;111:T 187.Search in Google Scholar

159. Senior DJ, Hamilton J. Use of xylanases for the reduction of AOX in kraft pulp bleaching. In: CPPA environmental conference. Quebec, Canada, 1991:310–4.Search in Google Scholar

160. Kantelinen A, Hortling B, Sundquist J, Linko M, Viikari L. Proposed mechanism of the enzymatic bleaching of kraft pulp with xylanases. Holzforschung. 1993;47:318–24.10.1515/hfsg.1993.47.4.318Search in Google Scholar

161. Choudhury B, Chauhan S, Singh SN, Ghosh P. Production of xylanase of Bacillus coagulans and its bleaching potential. World J Microbiol Biotechnol. 2006;22:283–8.10.1007/s11274-005-9033-0Search in Google Scholar

162. Singh G, Ahuja N, Batish M, Capalash N, Sharma P. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from γ-proteobacterium JB: optimization of process parameters using response surface methodology. Bioresour Technol. 2008;99:7472–9.10.1016/j.biortech.2008.02.023Search in Google Scholar PubMed

163. Sharma P, Goel R, Capalash N. Bacterial laccases. World J Microbiol Biotechnol. 2007;23:823–32.10.1007/s11274-006-9305-3Search in Google Scholar

164. Daâssi D, Zouari-Mechichi H, Belbahri L, Barriuso J, Martínez MJ, Nasri M, Mechichi T. Phylogenetic and metabolic diversity of Tunisian forest wood-degrading fungi: a wealth of novelties and opportunities for biotechnology. 3 Biotech. 2016;6:46.10.1007/s13205-015-0356-8Search in Google Scholar PubMed PubMed Central

165. Kirk TK, Yang HH. Partial delignification of unbleached kraft pulp with ligninolytic fungi. Biotechnol Lett. 1979;1:347–52.10.1007/BF01386698Search in Google Scholar

166. Nezamoleslami A, Suzuki K, Nishida T, Ueno T. Biobleaching of kenaf bast fiber, soda–AQ pulp using white-rot fungus. Tappi J. 1998;81:179–83.Search in Google Scholar

167. Christov LP, Akhtar M, Prior BA. Impact of xylanase and fungal pretreatment on alkali solubility and brightness of dissolving pulp. Holzforschung. 1996;50:579–82.Search in Google Scholar

168. Addleman K, Archibald F. Kraft Pulp Bleaching and Delignification by Dikaryons and Monokaryons of Trametes versicolor. Appl Environ Microbiol. 1993;59:266–73.10.1128/aem.59.1.266-273.1993Search in Google Scholar PubMed PubMed Central

169. Selvam K, Shanmuga Priya M, Arungandhi K. Pretreatment of wood chips and pulps with Thelephora sp. to reduce chemical consumption in paper industries. Int J ChemTech Res. 2011;3:471–6.Search in Google Scholar

Published Online: 2020-12-08

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/psr-2019-0044/pdf
Scroll to top button