Abstract
Separators and electrolytes provide electronic blockage and ion permeability between the electrodes in electrochemical cells. Nowadays, their performance and cost is often even more crucial to the commercial use of common and future electrochemical cells than the chosen electrode materials. Hence, at the present, many efforts are directed towards finding safe and reliable solid electrolytes or liquid electrolyte/separator combinations. With this comprehensive review, the reader is provided with recent approaches on this field and the fundamental knowledge that can be helpful to understand and push forward the developments of new electrolytes for rechargeable batteries. After presenting different types of separators as well as the main hurdles that are associated with them, this work focuses on promising material classes and concepts for next-generation batteries. First, chemical and crystallographic concepts and models for the description and improvement of the ionic conductivity of bulk and composite solid electrolytes are outlined. To demonstrate recent perspectives, research highlights have been included in this work: magnesium borohydride-based complexes for solid-state Mg batteries as well as all-in-one rechargeable SrTiO3 single-crystal energy storage. Furthermore, ionic liquids pose a promising safe alternative for future battery cells. An overview on their basic principles and use is given, demonstrating their applicability for Li-ion systems as well as for so-called post-Li chemistries, such as Mg- and Al-ion batteries.
Funding statement: TN, JH, and MdV are grateful for financial support of the Federal Ministry of Education and Research (CryPhysConcept (03EK3029A) and R2RBattery (03SF0542A)). Furthermore, ER thanks the Swiss National Science Foundation for financial support within the Sinergia project ‘Novel ionic conductors’ (CRSII2_160749/1).
References
[1] Nestler T, Schmid R, Münchgesang W, Bazhenov V, Schilm J, Leisegang T, et al. Separators-technology review: ceramic based separators for secondary batteries. In: AIP Conference Proceedings, volume 1597. AIP, 2014: 155–184.10.1063/1.4878486Search in Google Scholar
[2] https://electrek.co/2016/08/15/tesla-model-s-catches-fire-test-drive-france/ (2016).Search in Google Scholar
[3] https://www.cnet.com/news/why-is-samsung-galaxy-note-7-exploding-overheating/ (2016).Search in Google Scholar
[4] Volta A. On the Electricity excited by the mere Contact of conducting Substances of different kinds. Philos Trans R Soc 1800;2:40310.1080/14786440008562590Search in Google Scholar
[5] Washburn E. Thirds to f. US Patent 482,444 (1892).Search in Google Scholar
[6] Randell CF, White NC. Separators for electrochemical cells. WO Patent App. PCT/GB1996/001,318 (1996).Search in Google Scholar
[7] Arora P, Zhang Z. Battery separators. Chem Rev. 2004;104:4419.10.1021/cr020738uSearch in Google Scholar PubMed
[8] Daniel C, Besenhard JO. Handbook of battery materials. Weinheim, Germany: Wiley, 2012.10.1002/9783527637188Search in Google Scholar
[9] Huang X. Separator technologies for lithium-ion batteries. J Solid State Electrochem. 2011;15:649.10.1007/s10008-010-1264-9Search in Google Scholar
[10] Dafler JR. The ultimate polymer application: Resin-bonded cellulose separators for lead–acid batteries. J Appl Polym Sci. 1977;2551:21.10.1002/app.1977.070210921Search in Google Scholar
[11] Weber CJ, Geiger S, Falusi S, Roth M. International Freiberg Conference on Electrochemical Storage Materials - ESTORM 2013. American Institute of Physics: AIP Conference Proceedings, 2014.Search in Google Scholar
[12] Costa CM, Gomez Ribelles J, Lanceros-Méndez S, Appetecchi G, Scrosati B. Poly (vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems. J Power Sour. 2014;245:779.10.1016/j.jpowsour.2013.06.151Search in Google Scholar
[13] Ji Y, Jiang Y. Increasing the electrical conductivity of poly (vinylidene fluoride) by KrF excimer laser irradiation. Appl Phys Lett, 2006;89:221103.10.1063/1.2390632Search in Google Scholar
[14] Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47:2930.10.1002/anie.200702505Search in Google Scholar PubMed
[15] Zhang SS. A review on the separators of liquid electrolyte Li-ion batteries. J Power Sour. 2007;164:351.10.1016/j.jpowsour.2006.10.065Search in Google Scholar
[16] Wu MS, Liu KH, Wang YY, Wan CC. Heat dissipation design for lithium-ion batteries. J Power Sour. 2002;109:160.10.1016/S0378-7753(02)00048-4Search in Google Scholar
[17] Barnett B, Ofer D, Sriramulu S, Stringfellow R. Lithium-ion batteries, safety. In: Batteries for sustainability. New York: Springer, 2013:285–318.10.1007/978-1-4614-5791-6_9Search in Google Scholar
[18] Hueso KB, Armand M, Rojo T. High temperature sodium batteries: status, challenges and future trends. Energy & Environ Sci. 2013;6:734.10.1039/c3ee24086jSearch in Google Scholar
[19] Choudhury A, Chandra H, Arora A. Application of solid oxide fuel cell technology for power generation a review. Renewable Sustainable Energy Rev. 2013;20:430.10.1016/j.rser.2012.11.031Search in Google Scholar
[20] Frost, Sullivan. High-tech materials alert 15th March 2013. Frost & Sullivan, 2013.Search in Google Scholar
[21] Roth EP, Doughty DH, Pile DL. Effects of separator breakdown on abuse response of 18650 Li-ion cells. J Power Sour. 2007;174:579.10.1016/j.jpowsour.2007.06.163Search in Google Scholar
[22] Orendorff CJ. The role of separators in Lithium-ion cell safety. Interface-Electrochem Soc. 2012;21:61.10.1149/2.F07122ifSearch in Google Scholar
[23] Kim JG, Son B, Mukherjee S, Schuppert N, Bates A, Kwon O, et al. A review of lithium and non-lithium based solid state batteries. J Power Sour. 2015;282:299.10.1016/j.jpowsour.2015.02.054Search in Google Scholar
[24] Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363.10.1016/j.nanoen.2017.01.028Search in Google Scholar
[25] Tubandt C, Lorenz E. Molekularzustand und elektrisches LeitvermoÈgen kristallisierter Salze. Z Phys Chem. 1914;24:513.10.1515/zpch-1914-8737Search in Google Scholar
[26] Wen Z, Hu Y, Wu X, Han J, Gu Z. Main challenges for high performance NAS battery: materials and interfaces. Adv Funct Mater. 2013;23:1005.10.1002/adfm.201200473Search in Google Scholar
[27] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, et al. A lithium superionic conductor. Nat Mater. 2011;10:682.10.1038/nmat3066Search in Google Scholar PubMed
[28] Fotheringham U, Schneider M, Hochrein O, Biedenbender S, Lauer S, Kluge M. Lithium ion-conductive glass ceramic, method for producing a lithium ion-conductive glass ceramic, ion conductor and use of the ion conductor. WO Patent App. PCT/EP2013/054,732 (2013).Search in Google Scholar
[29] Uneme Y, Tamura S, Kawato T, Imanaka N. Moderate temperature operative sulfur dioxide gas sensor based on an Ag+ ion conducting solid. Electrochem Solid-State Lett. 2011;14:J38.10.1149/1.3586781Search in Google Scholar
[30] Maier J. Space charge regions in solid two-phase systems and their conduction contribution I. Conductance enhancement in the system ionic conductor-inertphase and application on AgCl: Al2O3 and AgCl: SiO2. J Phys Chem Solids. 1985;46:309.10.1016/0022-3697(85)90172-6Search in Google Scholar
[31] Yao YFY, Kummer J. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem. 1967;29:2453.10.1016/0022-1902(67)80301-4Search in Google Scholar
[32] de Jongh P, Blanchard D, Matsuo M, Udovic T, Orimo S. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries. Appl Phys A. 2016;122:1.10.1007/s00339-016-9807-2Search in Google Scholar
[33] Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sour. 2010;195:2431.10.1016/j.jpowsour.2009.11.120Search in Google Scholar
[34] Anantharamulu N, Rao KK, Rambabu G, Kumar BV, Radha V, Vithal M. A wide-ranging review on Nasicon type materials. J Mater Sci. 2011;46:2821.10.1007/s10853-011-5302-5Search in Google Scholar
[35] Udovic TJ, Matsuo M, Tang WS, Wu H, Stavila V, Soloninin AV, et al. Exceptional superionic conductivity in disordered sodium Decahydro-closo-decaborate. Adv Mater. 2014;26:7622.10.1002/adma.201403157Search in Google Scholar PubMed
[36] Knauth P. Inorganic solid Li ion conductors: an overview. Solid State Ionics. 2009;180:911.10.1016/j.ssi.2009.03.022Search in Google Scholar
[37] Takada K. Progress and prospective of solid-state lithium batteries. Acta Mater. 2013;61:759.10.1016/j.actamat.2012.10.034Search in Google Scholar
[38] Menezes PV, Martin J, Schaefer M, Staesche H, Roling B, Weitzel KM. Bombardment induced ion transport Part II. Experimental potassium ion conductivities in borosilicate glass. Phys Chem Chem Phys. 2011;13:20123.10.1039/c1cp21216hSearch in Google Scholar PubMed
[39] Malavasi L, Fisher CAJ, Islam MS. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev. 2010;39:4370.10.1039/b915141aSearch in Google Scholar PubMed
[40] Maier J, Reichert B. Ionic transport in heterogeneously and homogeneously Doped Thallium (I)-Chloride. Berichte der Bunsengesellschaft für physikalische Chemie. 1986;90:666.10.1002/bbpc.19860900809Search in Google Scholar
[41] Imanaka N, Tamura S, Adachi G. Ammonia sensor based on ionically exchanged NH4+ gallate solid electrolytes. Electrochem Solid-State Lett. 1998;1:282.10.1149/1.1390713Search in Google Scholar
[42] Banno N, Sakamoto T, Iguchi N, Sunamura H, Terabe K, Hasegawa T, et al. Diffusivity of Cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch. Electron Devices, IEEE Trans. 2008;55:3283.10.1109/TED.2008.2004246Search in Google Scholar
[43] Reddy MA, Fichtner M. Batteries based on fluoride shuttle. J Mater Chem. 2011;21:17059.10.1039/c1jm13535jSearch in Google Scholar
[44] Patro L, Hariharan K. Fast fluoride ion conducting materials in solid state ionics: an overview. Solid State Ionics. 2013;239:41.10.1016/j.ssi.2013.03.009Search in Google Scholar
[45] Rongeat C, Reddy MA, Witter R, Fichtner M. Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries. J Phys Chem C. 2013;117:4943.10.1021/jp3117825Search in Google Scholar
[46] Hibino T, Kobayashi K, Nagao M. An all-solid-state rechargeable aluminum–air battery with a hydroxide ion-conducting Sb(v)-doped SnP2 O7 electrolyte. J Mater Chem A. 2013;1:14844.10.1039/c3ta12707aSearch in Google Scholar
[47] Kharton VV, Marques FMB, Atkinson A. Transport properties of solid oxide electrolyte ceramics: a brief review. Solid State Ionics. 2004;174:135.10.1016/j.ssi.2004.06.015Search in Google Scholar
[48] Fujii K, Esaki Y, Omoto K, Yashima M, Hoshikawa A, Ishigaki T, et al. New perovskite-related structure family of oxide-ion conducting materials NdBaInO4. Chem Mater. 2014;26:2488.10.1021/cm500776xSearch in Google Scholar
[49] Farrington G, Dunn B. Divalent beta”-aluminas: high conductivity solid electrolytes for divalent cations. Solid State Ionics. 1982;7:267.10.1016/0167-2738(82)90023-6Search in Google Scholar
[50] Dunn B, Farrington G. Fast divalent ion conduction in Ba++, Cd++ and Sr++ beta” aluminas. Mater Res Bull. 1980;15:1773.10.1016/0025-5408(80)90196-8Search in Google Scholar
[51] Ikeda S, Takahashi M, Ishikawa J, Ito K. Solid electrolytes with multivalent cation conduction. 1. Conducting species in Mg Zr PO4 system. Solid State Ionics. 1987;23:125.10.1016/0167-2738(87)90091-9Search in Google Scholar
[52] Carrillo-Cabrera W, Thomas JO, Farrington GC. The ionic distribution in trivalent Gd3+β”-alumina. Solid State Ionics. 1983;9:245.10.1016/0167-2738(83)90241-2Search in Google Scholar
[53] Dunn B, Farrington G. Trivalent ion exchange in beta” alumina. Solid State Ionics. 1983;9:223.10.1016/0167-2738(83)90237-0Search in Google Scholar
[54] Sattar S, Ghosal B, Underwood M, Mertwoy H, Saltzberg M, Frydrych W, et al. Synthesis of Di-and trivalent β”-aluminas by ion exchange. J Solid State Chem. 1986;65:231.10.1016/0022-4596(86)90058-7Search in Google Scholar
[55] Imanaka N, Tamura S, Nunotani N. Multivalence cation conductors. Encycl Appl Electrochem. 2014;1334–9.10.1007/978-1-4419-6996-5_168Search in Google Scholar
[56] Neiman AY, Pestereva N, Zhou Y, Nechaev D, Koteneva E, Vanec K, et al. The nature and the mechanism of ion transfer in tungstates Me2+WO4(Ca, Sr, Ba) and Me3+2WO3(Al, Sc, In) according to the data acquired by the tubandt method. Russ J Electrochem. 2013;49:895.10.1134/S1023193512120075Search in Google Scholar
[57] Nestler T, Fedotov S, Leisegang T, Meyer DC. Towards Al3+ mobility in crystalline solids: critical review and analysis. Crit Rev Solid State Mater Sci. 2018.10.1080/10408436.2018.1490248Search in Google Scholar
[58] Hayashi A, Ohtomo T, Mizuno F, Tadanaga M, Tatsumisago K. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem Commun. 2003;5:701.10.1016/S1388-2481(03)00167-XSearch in Google Scholar
[59] Machida N, Kobayashi K, Nishikawa Y, Shigematsu T. Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes. Solid State Ionics. 2004;175:247.10.1016/j.ssi.2003.11.033Search in Google Scholar
[60] Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material. J Power Sour. 2008;183:422.10.1016/j.jpowsour.2008.05.031Search in Google Scholar
[61] Hautier G, Jain A, Chen H, Moore C, Ong SP, Ceder G. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations. J Mater Chem. 2011;21:17147.10.1039/c1jm12216aSearch in Google Scholar
[62] Mori R. A new structured aluminium–air secondary battery with a ceramic aluminium ion conductor. RSC Adv. 2013:3:11547.10.1039/c3ra42211aSearch in Google Scholar
[63] Shimonishi Y, Zhang T, Imanishi N, Im D, Lee DJ, Hirano A, et al. A study on lithium/air secondary batteriesstability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions. J Power Sour. 2011;196:5128.10.1016/j.jpowsour.2011.02.023Search in Google Scholar
[64] Technology and market forecast of separators for rechargeable lithium ion batteries (2009–2014). Bundang-gu, Seongnam-si, Korea: Solar & Energy Co., Ltd, 2010.Search in Google Scholar
[65] Kim H, Ding Y, Kohl PA. LiSICON–ionic liquid electrolyte for lithium ion battery. J Power Sour. 2012;198:281.10.1016/j.jpowsour.2011.10.005Search in Google Scholar
[66] Gao J, Chu G, He M, Zhang S, Xiao R, Li H, et al. Screening possible solid electrolytes by calculating the conduction pathways using bond valence method. Sci China Phys Mech Astron. 2014;57:1526.10.1007/s11433-014-5511-4Search in Google Scholar
[67] Barber MN, Ninham BW. Random and restricted walks: theory and applications, volume 10. New York: CRC Press, 1970.Search in Google Scholar
[68] Koiwa M, Ishioka S. Random walk properties of lattices and correlation factors for diffusion via the vacancy mechanism in crystals. J Stat Phys 1983;30:477.10.1007/BF01012321Search in Google Scholar
[69] Mehrer H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes, volume 155. Berlin, Heidelberg, Germany: Springer Science & Business Media, 2007.10.1007/978-3-540-71488-0Search in Google Scholar
[70] Almond D, Duncan G, West A. The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics. 1983;8:159.10.1016/0167-2738(83)90079-6Search in Google Scholar
[71] Balluffi RW, Allen S, Carter WC. Kinetics of materials. Hoboken, USA: John Wiley & Sons, 2005.10.1002/0471749311Search in Google Scholar
[72] Xie H, Alonso JA, Li Y, Fernandez-Diaz MT, Goodenough JB. Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chem Mater. 2011;23:3587.10.1021/cm201671kSearch in Google Scholar
[73] Xu M, Park MS, Lee JM, Kim TY, Park YS, Ma E. Mechanisms of Li+ transport in garnet-type cubic Li3+xLa3M2O12 (M= Te, Nb, Zr). Phys Rev B. 2012;85:052301.10.1103/PhysRevB.85.052301Search in Google Scholar
[74] Whiteley JM, Woo JH, Hu E, Nam KW, Lee SH. Empowering the lithium metal battery through a silicon-based superionic conductor. J Electrochem Soc. 2014;161:A1812.10.1149/2.0501412jesSearch in Google Scholar
[75] Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026.10.1038/nmat4369Search in Google Scholar PubMed
[76] Sata N, Eberman K, Eberl K, Maier J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature. 2000;408:946.10.1038/35050047Search in Google Scholar PubMed
[77] Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater. 2005;4:805.10.1038/nmat1513Search in Google Scholar PubMed
[78] Pennycook TJ, Beck MJ, Varga K, Varela M, Pennycook SJ, Pantelides ST. Origin of colossal ionic conductivity in oxide multilayers: interface induced sublattice disorder. Phys Rev Lett. 2010;104:115901.10.1103/PhysRevLett.104.115901Search in Google Scholar PubMed
[79] Adams S. Ultrafast lithium migration in surface modified LiFePO4 by heterogeneous doping. Appl Energy. 2012;90:323.10.1016/j.apenergy.2011.04.053Search in Google Scholar
[80] Adepalli KK, Kelsch M, Merkle R, Maier J. Enhanced ionic conductivity in polycrystalline TiO2 by one-dimensional doping. Phys Chem Chem Phys. 2014;16:4942.10.1039/c3cp55054kSearch in Google Scholar PubMed
[81] Armstrong R, Bulmer R, Dickinson T. Fast ion transport in solids. Amsterdam: North Holland Publishing, 1973.Search in Google Scholar
[82] Goodenough J, Hong HP, Kafalas J. Fast Na+-ion transport in skeleton structures. Mater Res Bull. 1976;11:203.10.1016/0025-5408(76)90077-5Search in Google Scholar
[83] Adachi G, Imanaka N, Aono H. Fast Li+ conducting ceramic electrolytes. Adv Mater. 1996;8:127.10.1002/adma.19960080205Search in Google Scholar
[84] Levi E, Levi M, Chasid O, Aurbach D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J Electroceram. 2009;22:13.10.1007/s10832-007-9370-5Search in Google Scholar
[85] Adams S, Rao RP. Structural requirements for fast lithium ion migration in Li10GeP2S12. J Mater Chem. 2012;22:7687.10.1039/c2jm16688gSearch in Google Scholar
[86] Guin M, Tietz F. Survey of the transport properties of sodium superionic conductor materials for use in sodium batteries. J Power Sour. 2015;273:1056.10.1016/j.jpowsour.2014.09.137Search in Google Scholar
[87] Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016.10.1021/acs.chemmater.5b02342Search in Google Scholar
[88] Meutzner F, Münchgesang W, Leisegang T, Schmid R, Zschornak M, Ureña de Vivanco M, et al. Identification of solid oxygen-containing Na-electrolytes: an assessment based on crystallographic and economic parameters. Cryst Res Technol. 2017;52:1.10.1002/crat.201600223Search in Google Scholar
[89] Shannon RT. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A: Cryst Phys Diffr Theor Gen Crystallogr. 1976;32:751.10.1107/S0567739476001551Search in Google Scholar
[90] Liu S, Hu J, Yan N, Pan G, Li G, Gao X. Aluminum storage behavior of anatase TiO2 nanotube arrays in aqueous solution for aluminum ion batteries. Energy Environ Sci. 2012;5:9743.10.1039/c2ee22987kSearch in Google Scholar
[91] Geng L, Lv G, Xing X, Guo J. Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater. 2015;27:4926.10.1021/acs.chemmater.5b01918Search in Google Scholar
[92] Meutzner F, Nestler T, Zschornak M, Canepa P, Gautam GS, Leoni S, et al. Theoretical methods for battery material identification and analysis in electrochemical storage materials: from crystallography to manufacturing technology. Berlin: De Gruyter Oldenbourg Publishing House, 2018.Search in Google Scholar
[93] Imanaka N, Kobayashi Y, Adachi GY. A direct evidence for trivalent ion conduction in solids. Chem Lett. 1995;24:433.10.1246/cl.1995.433Search in Google Scholar
[94] Imanaka N, Tamura S. Development of multivalent ion conducting solid electrolytes. Bull Chem Soc Jpn. 2011;84:353.10.1246/bcsj.20100178Search in Google Scholar
[95] Driscoll DJ, Islam MS, Slater PR. Simulation and conductivity studies of defects and ion transport in Sc2(WO4)3. Solid State Ionics. 2005;176;539.10.1016/j.ssi.2004.09.024Search in Google Scholar
[96] Adams S. From bond valence maps to energy landscapes for mobile ions in ion-conducting solids. Solid State Ionics. 2006;177:1625.10.1016/j.ssi.2006.03.054Search in Google Scholar
[97] Zhou Y, Adams S, Rao RP, Edwards DD, Neiman A, Pestereva N. Charge transport by polyatomic anion diffusion in Sc2(WO4)3. Chem Mater. 2008;20:6335.10.1021/cm800466ySearch in Google Scholar
[98] Zhou Y, Rao RP, Adams S. Mechanism of defect formation and polyanion transport in solid scandium tungstate type oxides. Monatshefte für Chemie-Chem Mon. 2009;140:1017.10.1007/s00706-009-0140-8Search in Google Scholar
[99] Zhou Y, Rao RP, Adams S. Intrinsic polyatomic defects in Sc2(WO4)3. Solid State Ionics. 2011;192:34.10.1016/j.ssi.2010.06.024Search in Google Scholar
[100] Zhou Y, Neiman A, Adams S. Novel polyanion conduction in Sc2(WO4)3 type negative thermal expansion oxides. Phys Status Solidi (b). 2011;248:130.10.1002/pssb.201083969Search in Google Scholar
[101] Yada C, Ohmori A, Ide K, Yamasaki H, Kato T, Saito T, et al. Dielectric modification of 5V-class cathodes for high-voltage all-solid-state lithium batteries. Adv Energy Mater. 2014;4:9.10.1002/aenm.201301416Search in Google Scholar
[102] Takada K, Ohta N, Tateyama Y. Recent progress in interfacial nanoarchitectonics in solid-state batteries. J Inorg Organomet Polym Mater. 2015;25:205.10.1007/s10904-014-0127-8Search in Google Scholar
[103] Lepley N, Holzwarth N. Modeling interfaces between solids: application to Li battery materials. Phys Rev B. 2015;92:214201.10.1103/PhysRevB.92.214201Search in Google Scholar
[104] Takada K, Ohno T. Experimental and computational approaches to interfacial resistance in solid-state batteries. Front Energy Res. 2016;4:10.10.3389/fenrg.2016.00010Search in Google Scholar
[105] Wenzel S, Leichtweiß T, Weber DA, Sann J, Zeier WG, Janek J. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl Mater Interface. 2016.10.1021/acsami.6b10119Search in Google Scholar
[106] Aurbach D. The role of surface films on electrodes in Li-ion batteries. In: Advances in Lithium-ion batteries. New York: Springer, 2002: 7–77.10.1007/0-306-47508-1_2Search in Google Scholar
[107] Zhang JG, Xu W, Henderson WA. Lithium metal anodes and rechargeable lithium metal batteries. Switzerland: Springer, 2017.10.1007/978-3-319-44054-5Search in Google Scholar
[108] Guo X, Maier J. Grain boundary blocking effect in zirconia: a Schottky barrier analysis. J Electrochem Soc. 2001;148:E121.10.1149/1.1348267Search in Google Scholar
[109] Guo X, Waser R. Electrical properties of the grain boundaries of oxygen ion conductors: acceptor-doped zirconia and ceria. Prog Mater Sci. 2006;51:151.10.1016/j.pmatsci.2005.07.001Search in Google Scholar
[110] Guo X, Sigle W, Fleig J, Maier J. Role of space charge in the grain boundary blocking effect in doped zirconia. Solid State Ionics. 2002;154:555.10.1016/S0167-2738(02)00491-5Search in Google Scholar
[111] Uvarov N. Surface disordering of classic and superionic crystals: a description in the framework of the Stern model. Russ J Electrochem. 2007;43:368.10.1134/S1023193507040027Search in Google Scholar
[112] Uvarov N. Estimation of the surface potential in superionic oxide conductors using the Stern model. Solid State Ionics. 2008;179:783.10.1016/j.ssi.2008.01.043Search in Google Scholar
[113] Wagner J, Jr. Composite materials as solid electrolytes. In: Solid state batteries. Dordrecht, Netherlands: Springer, 1985: 77–90.10.1007/978-94-009-5167-9_7Search in Google Scholar
[114] Maier J. Ionic conduction in space charge regions. Prog Solid State Chem. 1995;23:171.10.1016/0079-6786(95)00004-ESearch in Google Scholar
[115] Uvarov N. Composite solid electrolytes: recent advances and design strategies. J Solid State Electrochem. 2011;15:367.10.1007/s10008-008-0739-4Search in Google Scholar
[116] Liang C, Joshi A, Hamilton N. Solid-state storage batteries. J Appl Electrochem. 1978;8:445.10.1007/BF00615840Search in Google Scholar
[117] Crompton TP. Battery reference book. Oxford, Great Britain: Newnes, 2000. eBook ISBN: 9780080499956.Search in Google Scholar
[118] Uvarov N. Estimation of composites conductivity using a general mixing rule. Solid State Ionics. 2000;136:1267.10.1016/S0167-2738(00)00585-3Search in Google Scholar
[119] Uvarov NF. Estimation of electrical properties of composite solid electrolytes of different morphologies. Solid State Ionics. 2017;302:19.10.1016/j.ssi.2016.11.021Search in Google Scholar
[120] Konisheva E, Neiman A, Gorbunova E.. Transport processes and surface transformation at the CaWO4|WO3 interface. Solid State Ionics. 2003;157:45.10.1016/S0167-2738(02)00188-1Search in Google Scholar
[121] Neiman AY, Pestereva N, Sharafutdinov A, Kostikov YP. Conduction and transport numbers in metacomposites MeWO 4£ WO 3 (Me= Ca, Sr, Ba). Russ J Electrochem. 2005;41:598.10.1007/s11175-005-0112-1Search in Google Scholar
[122] Neiman AY, Uvarov N, Pestereva N. Solid state surface and interface spreading: an experimental study. Solid State Ionics. 2007;177:3361.10.1016/j.ssi.2006.10.006Search in Google Scholar
[123] Uvarov N. Phenomenological description of transport properties of three-phase composites. Russ J Electrochem. 2017;53:700.10.1134/S1023193517070151Search in Google Scholar
[124] Ulihin A, Mateyshina YG, Uvarov N. All-solid-state asymmetric supercapacitors with solid composite electrolytes. Solid State Ionics. 2013;251:62.10.1016/j.ssi.2013.03.014Search in Google Scholar
[125] Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1:16013.10.1038/natrevmats.2016.13Search in Google Scholar
[126] Ling C, Banerjee D, Matsui M. Study of the electrochemical deposition of Mg in the atomic level: why it prefers the non-dendritic morphology. Electrochim Acta. 2012;76:270.10.1016/j.electacta.2012.05.001Search in Google Scholar
[127] Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, et al. Prototype systems for rechargeable magnesium batteries. Nature. 2000;407:724.10.1038/35037553Search in Google Scholar PubMed
[128] Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, et al. Progress in rechargeable magnesium battery technology. Adv Mater. 2007;19:4260.10.1002/adma.200701495Search in Google Scholar
[129] Chusid O, Gofer Y, Gizbar H, Vestfrid Y, Levi E, Aurbach D, et al. Solid-state rechargeable magnesium batteries. Adv Mater. 2003;15:627.10.1002/adma.200304415Search in Google Scholar
[130] Canepa P, Sai Gautam G, Hannah DC, Malik R, Liu M, Gallagher KG, et al. Odyssey of multivalent cathode materials: open questions and future challenges. Chem Rev. 2017;117:4287.10.1021/acs.chemrev.6b00614Search in Google Scholar PubMed
[131] Muldoon J, Bucur CB, Gregory T. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev. 2014;114:11683.10.1021/cr500049ySearch in Google Scholar PubMed
[132] Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D. Mg rechargeable batteries: an on-going challenge. Energy Environ Sci. 2013;6:2265.10.1039/c3ee40871jSearch in Google Scholar
[133] Ikeda S, Takahashi M, Ishikawa J, Ito K. Solid electrolytes with multivalent cation conduction. 1. Conducting species in MgZrPO4 system. Solid State Ionics. 1987;23:125.10.1016/0167-2738(87)90091-9Search in Google Scholar
[134] Imanaka N, Okazaki Y, Adachi GY. Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites. J Mater Chem. 2000;10:1431.10.1039/a909599cSearch in Google Scholar
[135] Imanaka N, Okazaki Y, Adachi G. Optimization of divalent magnesium ion conduction in phosphate based polycrystalline solid electrolytes. Ionics. 2001;7:440.10.1007/BF02373581Search in Google Scholar
[136] Mielewczyk A, Molin S, Gdula K, Jasiński G, Kusz B, Jasiński P, et al. Structure and electric properties of double magnesium zirconium orthophosphate. Mater Ceram. 2010;62:477.Search in Google Scholar
[137] Gobechiya E, Sukhanov M, Petkov V, Kabalov YK. Crystal structure of the double magnesium zirconium orthophosphate at temperatures of 298 and 1023 K. Crystallogr Rep. 2008;53:53.10.1134/S1063774508010069Search in Google Scholar
[138] Takada K. Solid electrolytes and solid-state batteries. In: AIP Conference Proceedings, volume 1765. AIP Publishing, 2016: 020008.10.1063/1.4961900Search in Google Scholar
[139] Mohtadi R, Mizuno F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotechnol. 2014;5:1291.10.3762/bjnano.5.143Search in Google Scholar PubMed PubMed Central
[140] Shao Y, Rajput NN, Hu J, Hu M, Liu T, Wei Z, et al. Nanocomposite polymer electrolyte for rechargeable magnesium batteries. Nano Energy. 2015;12:750.10.1016/j.nanoen.2014.12.028Search in Google Scholar
[141] Mohtadi R, Matsui M, Arthur TS, Hwang SJ. Magnesium borohydride: from hydrogen storage to magnesium battery. Angew Chem Int Ed. 2012;51:9780.10.1002/anie.201204913Search in Google Scholar PubMed PubMed Central
[142] Lu Z, Ciucci F. Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem Mater. 2017;29:9308.10.1021/acs.chemmater.7b03284Search in Google Scholar
[143] Ikeshoji T, Tsuchida E, Takagi S, Matsuo M, Orimo SI. Magnesium ion dynamics in Mg(BH4)2 (1- x)X2x (X= Cl or AlH4) from first-principles molecular dynamics simulations. RSC Adv. 2014;4:1366.10.1039/C3RA42453GSearch in Google Scholar
[144] Higashi S, Miwa K, Aoki M, Takechi K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem Commun. 2014;50:1320.10.1039/C3CC47097KSearch in Google Scholar
[145] Roedern E, Kühnel RS, Remhof A, Battaglia C. Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries. Sci Rep. 2017;7.10.1038/srep46189Search in Google Scholar
[146] Chen J, Chua YS, Wu H, Xiong Z, He T, Zhou W, et al. Synthesis, structures and dehydrogenation of magnesium borohydride–ethylenediamine composites. Int J Hydrogen Energy. 2015;40:412.10.1016/j.ijhydene.2014.11.020Search in Google Scholar
[147] Lide D. CRC handbook of chemistry and physics, 88th Ed. Boca Raton: CRC Press, 2007.Search in Google Scholar
[148] Giorgini MG, Pelletti MR, Paliani G, Cataliotti RS. Vibrational spectra and assignments of ethylene-diamine and its deuterated derivatives. J Raman Spectrosc. 1983;14:16.10.1002/jrs.1250140106Search in Google Scholar
[149] Iwamoto T, Shriver DF. Vibrational spectra of catena-µ-Ethylenediamine complexes of Zinc(II), Cadmium(II), and Mercury(II) with the formula M(en)X2. Inorg Chem. 1971;10:2428.10.1021/ic50105a013Search in Google Scholar
[150] Allen A, Senoff C. Infrared spectra of tris-ethylenediamine complexes of Ruthenium(II). Can J Chem. 1965;43:888.10.1139/v65-115Search in Google Scholar
[151] Bennett AM, Foulds GA, Thornton DA, Watkins GM. The infrared spectra of ethylenediamine complexesII. Tris-, bis-and mono (ethylenediamine) complexes of metal(II) halides. Spectrochim Acta Part A: Mol Spectrosc. 1990;46:13.10.1016/0584-8539(93)80004-TSearch in Google Scholar
[152] Skripov AV, Soloninin AV, Ley MB, Jensen TR, Filinchuk Y. Nuclear magnetic resonance studies of BH4 reorientations and Li diffusion in LiLa(BH4)3Cl. J Phys Chem C. 2013;117:14965.10.1021/jp403746mSearch in Google Scholar
[153] Hansen BR, Paskevicius M, Li HW, Akiba E, Jensen TR. Metal boranes: progress and applications. Coord Chem Rev. 2016;323:60.10.1016/j.ccr.2015.12.003Search in Google Scholar
[154] Mannhart J, Schlom DG. Oxide–Tausendsassas für die Elektronik. Phys J. 2005;4:45.Search in Google Scholar
[155] Lu X, Xia G, Lemmon JP, Yang Z. Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J Power Sour. 2010;195:2431.10.1016/j.jpowsour.2009.11.120Search in Google Scholar
[156] Tucker MC. Progress in metal-supported solid oxide fuel cells: a review. J Power Sour. 2010;195:4570.10.1016/j.jpowsour.2010.02.035Search in Google Scholar
[157] Kraytsberg A, Ein Eli Y. Higher, stronger, better: a review of 5 V cathode materials for advanced Lithium-ion batteries. Adv Energy Mater. 2012;2:922.10.1002/aenm.201200068Search in Google Scholar
[158] Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, et al. Progress of electrochemical capacitor electrode materials: a review. Int J Hydrogen Energy. 2009;34:4889.10.1016/j.ijhydene.2009.04.005Search in Google Scholar
[159] Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172.10.1039/c1cs15228aSearch in Google Scholar PubMed
[160] Hanzig J, Zschornak M, Nentwich M, Hanzig F, Gemming S, Leisegang T, et al. Strontium titanate: an all-in-one rechargeable energy storage material. J Power Sour. 2014;267:700.10.1016/j.jpowsour.2014.05.095Search in Google Scholar
[161] Valov I, Linn E, Tappertzhofen S, Schmelzer J, Van den Hurk S, Lentz F, et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat Commun. 2013;4:1771.10.1038/ncomms2784Search in Google Scholar PubMed
[162] Hanzig J, Zschornak M, Hanzig F, Mehner E, Stöcker H, Abendroth B, et al. Migration-induced field-stabilized polar phase in strontium titanate single crystals at room temperature. Phys Rev B. 2013;88:024104.10.1103/PhysRevB.88.024104Search in Google Scholar
[163] Hanzig J, Mehner S, Jachalke E, Hanzig F, Zschornak M, Richter C, et al. Dielectric to pyroelectric phase transition induced by defect migration. J Phys. 2015;17:023036.10.1088/1367-2630/17/2/023036Search in Google Scholar
[164] Kröger F. A., Vink H. J. Solid-State Physics. In F. Seitz and D. Turnbull (eds). New York: Academic Press Inc. 1956;3:307.10.1016/S0081-1947(08)60135-6Search in Google Scholar
[165] Waser R, Dittmann R, Staikov G, Szot K. Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv Mater. 2009;21:2632.10.1002/adma.200900375Search in Google Scholar
[166] Blanc J, Staebler DL. Electrocoloration in SrTiO3: vacancy drift and oxidation-reduction of transition metals. Phys Rev B. 1971;4:3548.10.1103/PhysRevB.4.3548Search in Google Scholar
[167] Mohapatra SK, Wagner S. Electrochromism in nickel-doped strontium titanate. J Appl Phys. 1979;50:5001.10.1063/1.325579Search in Google Scholar
[168] Hanzig J, Zschornak M, Mehner E, Hanzig F, Münchgesang W, et al. The anisotropy of oxygen vacancy migration in SrTiO3. J Phys: Condens Matter. 2016;28:225001.10.1088/0953-8984/28/22/225001Search in Google Scholar PubMed
[169] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303.10.1021/cr030203gSearch in Google Scholar PubMed
[170] Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev. 2014;114:11503.10.1021/cr500003wSearch in Google Scholar PubMed
[171] Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8:621.10.1038/nmat2448Search in Google Scholar PubMed
[172] Sakaebe H, Matsumoto H, Tatsumi K. Application of room temperature ionic liquids to Li batteries. Electrochim Acta. 2007;53:1048.10.1016/j.electacta.2007.02.054Search in Google Scholar
[173] Balducci A, Dugas R, Taberna P, Simon P, Plée D, Mastragostino M, et al. High temperature carboncarbon supercapacitor using ionic liquid as electrolyte. J Power Sour. 2007;165:922.10.1016/j.jpowsour.2006.12.048Search in Google Scholar
[174] Brandt A, Balducci A. Theoretical and practical energy limitations of organic and ionic liquid-based electrolytes for high voltage electrochemical double layer capacitors. J Power Sour. 2014;250:343.10.1016/j.jpowsour.2013.10.147Search in Google Scholar
[175] Appetecchi GB, Montanino M, Passerini S. Ionic liquid-based electrolytes for high energy, safer Lithium batteries. In: ACS Symposium Series, volume 1117. ACS Publications, 2012: 67–128.10.1021/bk-2012-1117.ch004Search in Google Scholar
[176] Eshetu GG, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, et al. Comprehensive insights into the reactivity of electrolytes based on sodium ions. ChemSusChem. 2016;9:462.10.1002/cssc.201501605Search in Google Scholar PubMed
[177] Chen Y, Zhang X, Zhang D, Yu P, Ma Y. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon. 2011;49:573.10.1016/j.carbon.2010.09.060Search in Google Scholar
[178] Xu B, Wu F, Chen R, Cao G, Chen S, Yang Y. Mesoporous activated carbon fiber as electrode material for high-performance electrochemical double layer capacitors with ionic liquid electrolyte. J Power Sour. 2010;195:2118.10.1016/j.jpowsour.2009.09.077Search in Google Scholar
[179] Pettersson F, Keskinen J, Remonen T, von Hertzen L, Jansson E, Tappura K, et al. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper. J Power Sour. 2014;271:298.10.1016/j.jpowsour.2014.08.020Search in Google Scholar
[180] Yamamoto T, Nohira T, Hagiwara R, Fukunaga A, Sakai S, Nitta K, et al. Chargedischarge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amidepotassium bis(fluorosulfonyl)amide. J Power Sour. 2012;217:479.10.1016/j.jpowsour.2012.05.110Search in Google Scholar
[181] Hasa I, Passerini S, Hassoun J. Characteristics of an ionic liquid electrolyte for sodium-ion batteries. J Power Sour. 2016;303:203.10.1016/j.jpowsour.2015.10.100Search in Google Scholar
[182] Monti D, Jónsson E, Palacín MR, Johansson P. Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity. J Power Sour. 2014;245:630.10.1016/j.jpowsour.2013.06.153Search in Google Scholar
[183] Menne S, Schroeder M, Vogl T, Balducci A. Carbonaceous anodes for lithium-ion batteries in combination with protic ionic liquids-based electrolytes. J Power Sour. 2014;266:208.10.1016/j.jpowsour.2014.04.155Search in Google Scholar
[184] Menne S, Vogl T, Balducci A. The synthesis and electrochemical characterization of bis(fluorosulfonyl)imide-based protic ionic liquids. Chem Commun. 2015;51:3656.10.1039/C4CC09665GSearch in Google Scholar PubMed
[185] Reale P, Fernicola A, Scrosati B. Compatibility of the Py24TFSILiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes. J Power Sour. 2009;194:182.10.1016/j.jpowsour.2009.05.016Search in Google Scholar
[186] Montanino M, Moreno M, Carewska M, Maresca G, Simonetti E, Lo Presti R, et al. Mixed organic compound-ionic liquid electrolytes for lithium battery electrolyte systems. J Power Sour. 2014;269:608.10.1016/j.jpowsour.2014.07.027Search in Google Scholar
[187] Elia GA, Bernhard R, Hassoun J. A lithium-ion oxygen battery using a polyethylene glyme electrolyte mixed with an ionic liquid. RSC Adv. 2015;5:21360.10.1039/C4RA17277ASearch in Google Scholar
[188] Agostini M, Ulissi U, Di Lecce D, Ahiara Y, Ito S, Hassoun J, et al. A Lithium-ion battery based on an Ionic liquid electrolyte, Tin-Carbon nanostructured anode, and Li2O-ZrO2 -coated Li[Ni0.8Co0.15Al0.05]O2 Cathode. Energy Technol. 2015;3:632.10.1002/ente.201402226Search in Google Scholar
[189] Di Lecce D, Brutti S, Panero S, Hassoun J. A new Sn-C/LiFe0.1Co0.9PO4 full lithium-ion cell with ionic liquid-based electrolyte. Mater Lett. 2015;139:329.10.1016/j.matlet.2014.10.089Search in Google Scholar
[190] Nádherná M, Reiter J, Moškon J, Dominko R. Lithium bis(fluorosulfonyl)imidePYR14TFSI ionic liquid electrolyte compatible with graphite. J Power Sour. 2011;196:7700.10.1016/j.jpowsour.2011.04.033Search in Google Scholar
[191] Reiter J, Nádherná M, Dominko R. Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries. J Power Sour. 2012;205:402.10.1016/j.jpowsour.2012.01.003Search in Google Scholar
[192] Chagas LG, Buchholz D, Wu L, Vortmann B, Passerini S. Unexpected performance of layered sodium-ion cathode material inionic liquid-based electrolyte. J Power Sour. 2014;247:377.10.1016/j.jpowsour.2013.08.118Search in Google Scholar
[193] Kim JK, Mueller F, Kim H, Jeong S, Park JS, Passerini S, et al. Eco-friendly energy storage system: seawater and Ionic Liquid electrolyte. ChemSusChem. 2016;9:42.10.1002/cssc.201501328Search in Google Scholar PubMed
[194] Wang P, Zakeeruddin SM, Comte P, Exnar I, Grätzel M. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells. J Am Chem Soc. 2003;125:1166.10.1021/ja029294+Search in Google Scholar PubMed
[195] Galiński M, Lewandowski A, Stȩpniak I. Ionic liquids as electrolytes. Electrochim Acta. 2006;51:5567.10.1016/j.electacta.2006.03.016Search in Google Scholar
[196] Xue L, Padgett CW, DesMarteau DD, Pennington WT. Synthesis and structures of alkali metal salts of bis [(trifluoromethyl) sulfonyl] imide. Solid State Sci. 2002;4:1535.10.1016/S1293-2558(02)00050-XSearch in Google Scholar
[197] Zhou Q, Boyle PD, Malpezzi L, Mele A, Shin JH, Passerini S, et al. Phase behavior of Ionic LiquidLiX mixtures: Pyrrolidinium cations and TFSI anions linking structure to transport properties. Chem Mater. 2011;23:4331.10.1021/cm201427kSearch in Google Scholar
[198] Eftekhari A, Liu Y, Chen P. Different roles of ionic liquids in lithium batteries. J Power Sour. 2016;334:221.10.1016/j.jpowsour.2016.10.025Search in Google Scholar
[199] Bhatt AI, May I, Volkovich VA, Hetherington ME, Lewin B, Thied RC, et al. Group 15 quaternary alkyl bistriflimides: ionic liquids with potential application in electropositive metal deposition and as supporting electrolytes. J Chem Soc Dalton Trans. 2002;24:4532.10.1039/b208968hSearch in Google Scholar
[200] Matsumoto H, Yanagida M, Tanimoto K, Nomura M, Kitagawa Y, Miyazaki Y. Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis (trifluoromethylsulfonyl) imide. Chem Lett. 2000;29:922.10.1246/cl.2000.922Search in Google Scholar
[201] Kim JK, Matic A, Ahn JH, Jacobsson P. An imidazolium based ionic liquid electrolyte for lithium batteries. J Power Sour. 2010;195:7639.10.1016/j.jpowsour.2010.06.005Search in Google Scholar
[202] Seki S, Ohno Y, Kobayashi Y, Miyashiro H, Usami A, Mita Y, et al. Imidazolium-based room-temperature Ionic liquid for Lithium secondary batteries. J Electrochem Soc. 2007;154:A173.10.1149/1.2426871Search in Google Scholar
[203] Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, et al. Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B. 2006;110:10228.10.1021/jp0620872Search in Google Scholar PubMed
[204] Yim T, Lee HY, Kim HJ, Mun J, Kim S, Oh SM, et al. Synthesis and properties of pyrrolidinium and piperidinium bis (trifluoromethanesulfonyl) imide ionic liquids with allyl substituents. Bull Korean Chem Soc. 2007;28:1567.10.5012/bkcs.2007.28.9.1567Search in Google Scholar
[205] Fang S, Yang L, Wei C, Peng C, Tachibana K, Kamijima K. Low-viscosity and low-melting point asymmetric trialkylsulfonium based ionic liquids as potential electrolytes. Electrochem Commun. 2007;9:2696.10.1016/j.elecom.2007.09.003Search in Google Scholar
[206] Ye H, Huang J, Xu JJ, Khalfan A, Greenbaum SG. Li ion conducting polymer gel electrolytes based on ionic liquid/PVDF-HFP blends. J Electrochem Soc. 2007;154:A1048.10.1149/1.2779962Search in Google Scholar PubMed PubMed Central
[207] Tsunashima K, Yonekawa F, Sugiya M. Lithium secondary batteries using a Lithium Nickelate-based cathode and phosphonium ionic liquid electrolytes. Electrochem Solid-State Lett. 2009;12:A54.10.1149/1.3054290Search in Google Scholar
[208] Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun. 1992;13:965.10.1039/c39920000965Search in Google Scholar
[209] Henderson WA, Passerini S. Phase behavior of ionic liquid LiX mixtures: Pyrrolidinium cations and TFSI - anions. Chem Mater. 2004;16:2881.10.1021/cm049942jSearch in Google Scholar
[210] Elia GGA, Ulissi U, Mueller F, Reiter J, Tsiouvaras N, Sun YK, et al. A Long-life lithium ion battery with enhanced electrode/electrolyte interface by using an ionic liquid solution. Chem Eur J. 2016;22:6808.10.1002/chem.201505192Search in Google Scholar PubMed
[211] Appel R, Becke-Goehring M, Eisenhauer G, Hartenstein J. Imidobisschwefelsäurechlorid. Chem Ber. 1962;95:625.10.1002/cber.19620950307Search in Google Scholar
[212] Michot C, Armand M, Sanchez JY, Choquette Y, Gauthier M. Materiau a conduction ionique presentant de bonnes proprietes anti-corrosion, 1995.Search in Google Scholar
[213] Elia GA, Ulissi U, Jeong S, Passerini S, Hassoun J. Exceptional long-life performance of lithium-ion batteries using ionic liquid-based electrolytes. Energy Environ Sci. 2016;9:3210.10.1039/C6EE01295GSearch in Google Scholar
[214] Piper DM, Evans T, Leung K, Watkins T, Olson J, Kim SC, et al. Stable silicon-ionic liquid interface for next-generation lithium-ion batteries. Nat Commun. 2015;6:6230.10.1038/ncomms7230Search in Google Scholar PubMed
[215] Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7:19.10.1038/nchem.2085Search in Google Scholar PubMed
[216] Tarascon JM. Is lithium the new gold? Nat Chem. 2010;2:510.10.1038/nchem.680Search in Google Scholar PubMed
[217] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries. Chem Rev. 2014;114:11636.10.1021/cr500192fSearch in Google Scholar PubMed
[218] Nithya C, Gopukumar S. Sodium ion batteries: a newer electrochemical storage. Wiley Interdiscip Rev: Energy Environ. 2015;4:253.10.1002/wene.136Search in Google Scholar
[219] Hasa I, Buchholz D, Passerini S, Hassoun J. A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. ACS Appl Mater Interface. 2015;7:5206.10.1021/am5080437Search in Google Scholar PubMed
[220] Hasa I, Passerini S, Hassoun J. A rechargeable sodium-ion battery using a nanostructured SbC anode and P2-type layered [Na0.6Ni0.22Fe0.11Mn0.66O2 cathode. RSC Adv. 2015;5:48928.10.1039/C5RA06336ASearch in Google Scholar
[221] Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science (New York, N.Y.) 2011;334:928.10.1126/science.1212741Search in Google Scholar PubMed
[222] Zhao Q, Hu Y, Zhang K, Chen J. Potassium sulfur batteries: a new member of room-temperature rechargeable metal sulfur batteries. Inorg Chem. 2014;53:9000.10.1021/ic500919eSearch in Google Scholar PubMed
[223] Ren X, Wu Y. A low-overpotential potassium oxygen battery based on potassium superoxide. J Am Chem Soc. 2013;135:2923.10.1021/ja312059qSearch in Google Scholar PubMed
[224] Ponrouch A, Frontera C, Bardé F, Palacín MR. Towards a calcium-based rechargeable battery. Nat Mater. 2015;15:169.10.1038/nmat4462Search in Google Scholar PubMed
[225] See KA, Gerbec JA, Jun YSS, Wudl F, Stucky GD, Seshadri R. A high capacity calcium primary cell based on the Ca-S system. Adv Energy Mater. 2013;3:1056.10.1002/aenm.201300160Search in Google Scholar
[226] Aurbach D, Gizbar H, Schechter A, Chusid O, Gottlieb HE, Gofer Y, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J Electrochem Soc. 2002;149:A115.10.1149/1.1429925Search in Google Scholar
[227] Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, et al. An ultrafast rechargeable aluminium-ion battery. Nature. 2015;520:325.10.1038/nature14340Search in Google Scholar PubMed
[228] Sun H, Wang W, Yu Z, Yuan Y, Wang S, Jiao S. A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun. 2015;51:11892.10.1039/C5CC00542FSearch in Google Scholar
[229] Shkolnikov E, Zhuk A, Vlaskin M. Aluminum as energy carrier: feasibility analysis and current technologies overview. Renewable Sustainable Energy Rev. 2011;15:4611.10.1016/j.rser.2011.07.091Search in Google Scholar
[230] Li Q, Bjerrum NJ. Aluminum as anode for energy storage and conversion: a review. J Power Sour. 2002;110:1.10.1016/S0378-7753(01)01014-XSearch in Google Scholar
[231] U.S. Geological Survey. Mineral commodity summaries 2015: U.S. Geological Survey. 2015:196. http://dx.doi.org/10.3133/7014009410.3133/70140094Search in Google Scholar
[232] Fleischer M. Recent estimates of the abundances of the elements in this earth’s crust. Geol Surv Circ. 1953;285.10.3133/cir285Search in Google Scholar
[233] MacFarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, et al. Energy applications of ionic liquids. Energy Environ Sci. 2014;7:232.10.1039/C3EE42099JSearch in Google Scholar
[234] Otaegui L, Goikolea E, Aguesse F, Armand M, Rojo T, Singh G. Effect of the electrolytic solvent and temperature on aluminium current collector stability: a case of sodium-ion battery cathode. J Power Sour. 2015;297:168.10.1016/j.jpowsour.2015.07.084Search in Google Scholar
[235] Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci. 2014;66:1.10.1016/j.pmatsci.2014.04.001Search in Google Scholar
[236] Giffin GA. Ionic liquid-based electrolytes for “beyond lithium” battery technologies. J Mater Chem A. 2016;4:13378.10.1039/C6TA05260FSearch in Google Scholar
[237] Watkins T, Kumar A, Buttry DA. Designer ionic liquids for reversible electrochemical deposition/dissolution of magnesium. J Am Chem Soc. 2016;138:641.10.1021/jacs.5b11031Search in Google Scholar PubMed
[238] Kamath G, Narayanan B, Sankaranarayanan SKRS. Atomistic origin of superior performance of ionic liquid electrolytes for Al-ion batteries. Phys Chem Chem Phys. 2014;16:20387.10.1039/C4CP02840FSearch in Google Scholar PubMed
[239] Gifford PR. A substituted imidazolium chloroaluminate molten salt possessing an increased electrochemical window. J Electrochem Soc. 1987;134:610.10.1149/1.2100516Search in Google Scholar
[240] Zheng Y, Dong K, Wang Q, Zhang J, Lu X. Density, viscosity, and conductivity of Lewis acidic 1-butyl- and 1-hydrogen-3-methylimidazolium chloroaluminate ionic liquids. J Chem Eng Data. 2013;58:32.10.1021/je3004904Search in Google Scholar
[241] Lang CM, Kim K, Guerra L, Kohl PA. Cation electrochemical stability in chloroaluminate ionic liquids. J Phys Chem B. 2005;109:19454.10.1021/jp053106vSearch in Google Scholar PubMed
[242] Melton TJ, Joyce J, Maloy JT, Boon JA, Wilkes JS. Electrochemical studies of sodium chloride as a lewis buffer for room temperature chloroaluminate molten salts. J Electrochem Soc. 1990;137:3865.10.1149/1.2086315Search in Google Scholar
[243] Vestergaard B, Bjerrum NJ, Petrushina I, Hjuler HA, Berg RW, Begtrup M. Molten triazolium chloride systems as new aluminum battery electrolytes. J Electrochem Soc. 1993;140:3108.10.1149/1.2220994Search in Google Scholar
[244] Fannin AA, King LA, Levisky JA, Wilkes JS. Properties of 1,3-dialkylimidazolium chloride-aluminum chloride ionic liquids. 1. Ion interactions by nuclear magnetic resonance spectroscopy. J Phys Chem. 1984;88:2609.10.1021/j150656a037Search in Google Scholar
[245] Wilkes JS, Levisky JA, Wilson RA, Hussey CL. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg Chem. 1982;21:1263.10.1021/ic00133a078Search in Google Scholar
[246] Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, et al. Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interface. 2015;7:80.10.1021/am508001hSearch in Google Scholar PubMed
[247] Jiang T, Chollier Brym M, Dubé G, Lasia A, Brisard G. Electrodeposition of aluminium from ionic liquids: part Ielectrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf Coat Technol. 2006;201:1.10.1016/j.surfcoat.2005.10.046Search in Google Scholar
[248] Jiang T, Brym MC, Dubé G, Lasia A, Brisard G. Electrodeposition of aluminium from ionic liquids: Part II-studies on the electrodeposition of aluminum from aluminum chloride (AICl3])-trimethylphenylammonium chloride (TMPAC) ionic liquids. Surf Coat Technol. 2006;201:10.10.1016/j.surfcoat.2005.12.024Search in Google Scholar
[249] Gale RJ, Osteryoung RA. Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-1-butylpyridinium chloride mixtures. Inorg Chem. 1979;18:1603.10.1021/ic50196a044Search in Google Scholar
[250] Elia GA, Marquardt K, Hoeppner K, Fantini S, Lin R, Knipping E, et al. An overview and future perspectives of aluminum batteries. Adv Mater. 2016;28:7564.10.1002/adma.201601357Search in Google Scholar PubMed
[251] Xu M, Ivey D, Qu W, Xie Z. Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J Power Sour. 2015;274:1249.10.1016/j.jpowsour.2014.10.140Search in Google Scholar
© 2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Wall paintings – diagnostic and archaeometric studies
- Epigenetic modification, co-culture and genomic methods for natural product discovery
- Fluorescence correlation spectroscopy: The technique and its applications in soft matter
- Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives
- Substituent effects on linear and nonlinear optical properties of fluorescent (E)-2-(4-halophenyl)-7-arlstyrylimidazo[1,2-A] pyridine: spectroscopic and computational methods
- Multi-facets of kinetic roughening of interfaces
- Introduction of selenium and tellurium into reaction systems
- UV-Vis spectroscopy
- From natural products to drugs
Articles in the same Issue
- Wall paintings – diagnostic and archaeometric studies
- Epigenetic modification, co-culture and genomic methods for natural product discovery
- Fluorescence correlation spectroscopy: The technique and its applications in soft matter
- Separators and electrolytes for rechargeable batteries: Fundamentals and perspectives
- Substituent effects on linear and nonlinear optical properties of fluorescent (E)-2-(4-halophenyl)-7-arlstyrylimidazo[1,2-A] pyridine: spectroscopic and computational methods
- Multi-facets of kinetic roughening of interfaces
- Introduction of selenium and tellurium into reaction systems
- UV-Vis spectroscopy
- From natural products to drugs