Home Development of a methodical approach to set-up the injection velocity profile dependent on the part geometry
Article
Licensed
Unlicensed Requires Authentication

Development of a methodical approach to set-up the injection velocity profile dependent on the part geometry

  • Christian Hopmann and Thilo Köbel EMAIL logo
Published/Copyright: March 6, 2023
Become an author with De Gruyter Brill

Abstract

The injection volume rate is an important setting parameter of the injection moulding process as it determines local process parameters as melt front velocity, respectively, shear rate, pressure and temperature in the mould cavity. In order to avoid too low or too high melt front velocities, profiling of the injection volume rate during the injection is necessary dependent on the part geometry. However, the set-up of a volume rate profile at the machine is an iterative and subjective process so far. Therefore, a method is developed that determines a suitable volume rate profile based on the process simulation gaining a constant melt front velocity or melt front shear rate. A developed process model enables the transmission from simulation to the machine based on a volume rate balance in the screw antechamber. The simulative and experimental results show a good agreement of the cavity filling.


Corresponding author: Thilo Köbel, Institute for Plastics Processing in Industry and Craft, RWTH Aachen University, Seffenter Weg 201, 52074 Aachen, Germany, E-mail:

Funding source: AiF Projekt

Award Identifier / Grant number: 20935 N

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The research project 20935 N of the Forschungsvereinigung Kunststoffverarbeitung was sponsored as part of “industrielle Gemeinschaftsforschung und -entwicklung (IGF)” by the German Bundesministerium für Wirtschaft und Klimaschutz (BMWK) due to an enactment of the German Bundestag through the AiF. We would like to extend our thanks to all organisations mentioned.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Boldizar, A., Kubat, J., Rigdahl, M. Influence of mold filling rate and gate geometry on the modulus of high pressure injection-molded polyethylene. J. Appl. Polym. Sci. 1990, 39, 63–71; https://doi.org/10.1002/app.1990.070390106.Search in Google Scholar

2. Cox, H. W., Mentzer, C. C. The effect of fill time on properties. Polym. Eng. Sci. 1986, 26, 488–498; https://doi.org/10.1002/pen.760260707.Search in Google Scholar

3. Huang, M. C., Tai, C. C. The effective factors in the warpage problem of an injection-molded part with a thin shell feature. J. Mater. Process. Technol. 2001, 110, 1–9; https://doi.org/10.1016/s0924-0136(00)00649-x.Search in Google Scholar

4. Liao, S. J., Chang, D. Y., Chen, H. J., Tsou, L. S., Ho, J. R., Yau, H. T., Hsieh, W. H., Wang, J. T., Su, Y. C. Optimal process conditions of shrinkage and warpage of thin-wall parts. Polym. Eng. Sci. 2004, 44, 917–928; https://doi.org/10.1002/pen.20083.Search in Google Scholar

5. Ou-Yang, C., Maul, G. P. Optimal injection velocity profiling. Int. J. Prod. Res. 1989, 27, 1917–1934; https://doi.org/10.1080/00207548908942664.Search in Google Scholar

6. Thienel, P. Der Formfüllvorgang beim Spritzgießen von Thermoplasten. Ph.D. Thesis; RWTH Aachen University, Aachen, 1977.Search in Google Scholar

7. Lauterbach, M. Ein Steuerungskonzept zur Flexibilisierung des Thermoplast-Spritzgießprozesses. Ph.D. Thesis; RWTH Aachen University, Aachen, 1989.Search in Google Scholar

8. Speight, R. G., Monro, A. J., Khassapov, A. Benefits of velocity phase profiling for injection molding. In SPE ANTEC Proceedings: Atlanta, GE, 1998.Search in Google Scholar

9. Stitz, S. Erfahrungen eines Verarbeiters auf dem Gebiet der Prozesssteuerung beim Spritzgiessen. Kunststoffe 1978, 88, 33–37.Search in Google Scholar

10. Chen, X., Gao, F. Profiling of injection velocity for uniform mold filling. Adv. Polym. Technol. 2006, 25, 13–21; https://doi.org/10.1002/adv.20054.Search in Google Scholar

11. Chen, X., Zhang, L., Kong, X., Gao, F. Automatic velocity profile determination for uniform filling in injection molding. Polym. Eng. Sci. 2010, 50, 1358–1371; https://doi.org/10.1002/pen.21674.Search in Google Scholar

12. Gruber, J. M. Process control based in cavity pressure for the injection moulding process of thermoplastics. Ph.D. Thesis; RWTH Aachen University, Aachen, 2005.Search in Google Scholar

13. Lauterbach, M. Optimierung der Einspritzphase beim Spritzgießprozeß durch automatisches Anpassen des Schneckenvorlaufgeschwindigkeitsprofils. Master Thesis; RWTH Aachen University, Aachen, 1985.Search in Google Scholar

14. Liu, C. T., Huang, X., Zhao, Y. J., Shen, C. Y. Optimization of melt-front-velocity in injection molding based on numerical simulation. Polym. Mater. Sci. Eng. 2005, 21, 16–19.Search in Google Scholar

15. Yang, Y., Chen, X., Lu, N., Gao, F., Yang, Y., Gao, F., Lu, N., Chen, X. Injection Molding Process Control, Monitoring, and Optimization; Hanser Publishers: Munich, Vienna, 2016.10.3139/9781569905937.fmSearch in Google Scholar

16. Hopmann, C., Menges, G., Michaeli, W., Mohren, P. Spritzgießwerkzeuge; Carl Hanser Verlag: Munich, 2018.10.3139/9783446453906.fmSearch in Google Scholar

17. Chen, X., Chen, G., Gao, F. Capacitive transducer for in-mold monitoring of injection molding. Adv. Polym. Technol. 2004, 25, 13–21; https://doi.org/10.1002/adv.20054.Search in Google Scholar

18. Zhao, P., Yang, D., Zhou, H., Xu, K. Fast optimization of injection velocity profile based on graph theory. Polym. Plast. Technol. Eng. 2011, 50, 581–587; https://doi.org/10.1080/03602559.2010.543741.Search in Google Scholar

19. N.N. Filling/Packing Moldex3D Analysis Setup, 2018. http://support.moldex3d.com/r16/en/sync/sync-for-nx/setadvancedprocess.html (accessed Nov 05, 2022).Search in Google Scholar

20. N.N. Ram Speed, Recommended Result. Moldflow Insight, 2022. https://knowledge.autodesk.com/support/moldflow-insight/learn-explore/caas/CloudHelp/cloudhelp/2021/ENU/MoldflowInsight-CLC-Results/files/Fill-or-flow-results/MoldflowInsight-CLC-Results-Fill-or-flow-results-Ram-speed-recommended-result-html-html.html (accessed Oct 20, 2022).Search in Google Scholar

21. Bourdon, K. Computer aided set-up of injection moulding machines. Ph.D. Thesis; RWTH Aachen University, Aachen, 1989.Search in Google Scholar

22. Groleau, M., Groleau, R. Factors affecting shot size variation in injection molding processes. In SPE ANTEC Proceedings; Orlando, FL, 2000; pp. 658–662.Search in Google Scholar

23. Mohamed, R. R. Comparison of predicted and measured flow rates in injection molding. Master‘s Thesis; University of Massachusetts Lowell, Lowell, MA, 2002.Search in Google Scholar

24. Thümen, T. Analyse der Rückstromsperre für den Spritzgießprozess. Ph.D. Thesis; Polymerforschung in Paderborn, Parderborn, 2009.Search in Google Scholar

25. Zook, C. Investigation into the dynamic behavior of an injection molding non-return valve. Ph.D. Thesis; University of Akron, Akron, OH, 2000.Search in Google Scholar

26. Kruppa, S. Adaptive Prozessführung und alternative Einspritzkonzepte beim Spritzgießen von Thermoplasten. Ph.D. Thesis; University Duisburg-Essen, Duisburg, 2015.Search in Google Scholar

27. Maruyama, J., Takatsugi, S. Injecting molding machine having a torque detecting device. U.S. Patent US7713049B2, Nov 5, 2010.Search in Google Scholar

28. Eben, J. Identifikation und Reduzierung realer Schwankungen durch praxistaugliche Prozessführungsmethoden beim Spritzgießen. Ph.D. Thesis; Technische Universität Chemnitz, Chemnitz, 2014.Search in Google Scholar

29. Schiffers, R. Verbesserung der Prozessfähigkeit beim Spritzgießen durch Nutzung von Prozessdaten und eine neuartige Schneckenhubführung. Ph.D. Thesis; University Duisburg-Essen, Duisburg, 2009.Search in Google Scholar

30. Schiffers, R., Moser, S., Kruppa, S., Busl, M. Verfahren zur Bestimmung eines realen Volumens einer spritzgießfähigen Masse in einem Spritzgießprozess; German Patent and Trade Mark Office Patent DE102015117237B3, March 23, 2017.Search in Google Scholar

31. Toensmeier, P. Reconfiguring machine control. Plast. Eng. 2021, 77, 36–38; https://doi.org/10.1002/peng.20450.Search in Google Scholar

32. Press, W. H., Teukolsky, S. A. Savitzky–Golay smoothing filters. Comput. Phys. 1980, 4, 669–672; https://doi.org/10.1063/1.4822961.Search in Google Scholar

Received: 2022-11-30
Accepted: 2023-02-14
Published Online: 2023-03-06
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2022-0300/html
Scroll to top button