Home Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts
Article
Licensed
Unlicensed Requires Authentication

Influence of chemical postprocessing on mechanical properties of laser-sintered polyamide 12 parts

  • Andreas Wörz EMAIL logo , Livia C. Wiedau , Katrin Wudy , Andreas Wegner , Gerd Witt and Dietmar Drummer
Published/Copyright: August 14, 2019
Become an author with De Gruyter Brill

Abstract

A limiting factor for industrial usage of laser-sintered parts is the high surface roughness due to the semi-molten or attaching powder particles resulting from tool and pressureless manufacturing. An approach to improve the surface quality is the postprocessing with acids to smoothen the surface as it enables improvement without geometrical restrictions of the parts. The present work deals with the usage of nitric, hydrochloric, and trifluoroacetic acids, and exhibits the influence on the resulting surface morphology, dimensional accuracy, and the mechanical properties. The results exhibit different interaction mechanics and show great differences in the resulting part properties.

Acknowledgments

The iGF project (19623 N) with the title “Resource saving small series production by polymer laser sintering – influence of the anisotropy and surface structure on the dynamic and mechanic long-term properties of laser sintered parts” of the research association Institute of Energy and Environmental Technology e.V. (iUTA) was funded by the Federal Ministry of Economics and Energy via the AiF within the program for funding industrial joint research based on a decision of the German Bundestag.

References

[1] Caffrey T, Wohlers T, Campbell I. Wohlers Report, Wohlers Associates, Inc, 2016.Search in Google Scholar

[2] Gebhardt A. Additive Fertigungsverfahren: Additive Manufacturing und 3D-Drucken für Prototyping–Tooling–Produktion, 5th ed., Carl Hanser Verlag: München, 2016.10.3139/9783446445390Search in Google Scholar

[3] Schmid M. Laser Sintering with Plastics. Carl Hanser Verlag: München, 2018.10.3139/9781569906842Search in Google Scholar

[4] Launhardt M, Wörz A, Loderer A, Laumer T, Drummer D, Hausotte T, Schmidt M. Polym. Test. 2016, 53, 217–226.10.1016/j.polymertesting.2016.05.022Search in Google Scholar

[5] Lake M. Oberflächentechnik in der Kunststoffverarbeitung: vorbehandeln, beschichten, bedrucken, funktionalisieren, prüfen, 2nd ed., Carl Hanser Verlag: München, 2016.10.3139/9783446449497Search in Google Scholar

[6] DIN 8580. Manufacturing Processes – Terms and Definitions Division, 2003.Search in Google Scholar

[7] Breuninger J, Becker R, Wolf A, Rommel S, Verl A. Generative Fertigung mit Kunststoffen: Konzeption und Konstruktion für Selektives Lasersintern, Springer Vieweg: Berlin, 2012.10.1007/978-3-642-24325-7Search in Google Scholar

[8] Wiedau LC, Meyer L, Wegner A, Witt G. Proceeding of the RapidTech, Carl Hanser Verlag: München, 2018, p 267–288.10.3139/9783446458123.017Search in Google Scholar

[9] Schmachtenberg E, Seul T. Model of Isothermic Laser-Sintering, Proceeding of the 60th Annual Technical Conference of the Society of Plastic Engineers, San Francisco, 2002, p 3030–3035.Search in Google Scholar

[10] Gibson I, Rosen DW, Stucker B. Additive Manufacturing Technologies, 2nd, Springer Science: New York, 2010.10.1007/978-1-4419-1120-9Search in Google Scholar

[11] Wörz A, Wudy K, Drummer D. Einfluss des Schichtaufbaus auf das mechanische Verhalten von selektiv lasergesinterten Bauteilen, Proceeding of the RapidTech, Carl Hanser Verlag: München, 2018, p 254–266.10.3139/9783446458123.016Search in Google Scholar

[12] Wörz A, Drummer D. Understanding Hatch-Dependent Part Properties in SLS, Proceeding of the Solid Freeform Fabrication Symposium, Austin, 2018, p 1360–1369.Search in Google Scholar

[13] Kruth JP, Levy G, Schindel R, Craeghs T, Yasa E. Consolidation of Polymer Powders by Selective Laser Sintering, Proceeding of the PMI International Conference, Genth, 2008, p 1–6.Search in Google Scholar

[14] Sauer A, Witt G. RTEJ. 2005, 2, 1–11.10.1007/978-3-322-82169-0_1Search in Google Scholar

[15] Kaddar W. Die generative Fertigung mittels Laser-Sintern: Scanstrategien, Einflüsse verschiedener Prozessparameter auf die mechanischen und optischen Eigenschaften beim LS von Thermoplasten und deren Nachbearbeitungsmöglichkeiten, Dissertation University Duisburg-Essen, 2010.Search in Google Scholar

[16] Caulfiled B, McHugh P, Lohfeld S. J. Mater. Process. Technol. 2007, 182, 477–488.10.1016/j.jmatprotec.2006.09.007Search in Google Scholar

[17] Wörz A, Wudy K, Drummer D, Wegner A, Witt G. J. Polym. Eng. 2018, 38, 573–582.10.1515/polyeng-2017-0227Search in Google Scholar

[18] Schmid M, Simon C, Levy G. Finishing of SLS-Parts for Rapid Manufacturing (RM)–a Comprehensive Approach, Proceedings of the Solid Freeform Fabrication Symposium, Austin, 2009, 1–10.Search in Google Scholar

[19] Schmid M, Levy GN. RTEJ. 2010, 7. Available at: https://www.rtejournal.de/ausgabe7/2636.Search in Google Scholar

[20] Baier O. Optimierung von FLM-Bauteilen durch chemische Nachbearbeitung sowie deren Einsatz in der Galvanik, Dissertation, Universtity Duisburg-Essen, 2016.Search in Google Scholar

[21] Zorll U, Schütze EC. Kunststoffe in der Oberflächentechnik, Kohlhammer: Stuttgart, 1986.Search in Google Scholar

[22] Ehrenstein GW, Pongratz S. Resistence and Stability of Polymers, Carl Hanser Verlag: München, 2013.10.3139/9783446437098Search in Google Scholar

[23] Ehrenstein GW. Polymer-Werkstoffe: Struktur-Eigenschaften-Anwendung, 2nd ed., Carl Hanser Verlag: München, 1999.Search in Google Scholar

[24] Reinhardt T. Entwicklung einer ganzheitlichen Verfahrenssystematik bei der Qualifizierung neuer Werkstoffe für das Laser-Sintern am Beispiel Polypropylen, Dissertation, University Duisburg-Essen, 2016.Search in Google Scholar

[25] Hofmann H, Spindler J. Verfahren in der Beschichtungs-und Oberflächentechnik, 3rd ed., Carl Hanser Verlag: München, 2014.10.3139/9783446441835Search in Google Scholar

[26] Hopmann C, Michaeli W, Greif H, Wolters L. Technologie der Kunststoffe: Lern- und Arbeitsbuch für die Aus- und Weiterbildung, 3rd ed., Carl Hanser Verlag: München, 2015.10.3139/9783446442078Search in Google Scholar

[27] Schwister K. Taschenbuch der Chemie: Mit zahlreichen Bildern und Tabellen, Fachbuchverl, Leipzig im Hanser-Verl: München, 2010.Search in Google Scholar

[28] Vollhardt KPC, Schore NE. Organische Chemie, Wiley-VCH: Weinheim, 2011.Search in Google Scholar

[29] Gerthsen T. Chemie für den Maschinenbau: Anorganische Chemie für Werkstoffe und Verfahren, Univ.-Verl. Karlsruhe: Karlsruhe, 2006.Search in Google Scholar

[30] DIN EN ISO 1133. Plastics-Determination of the melt mass-flow rate (MFR) and melt volume-rate (MVR) of thermoplastics – Part 1: Standard method, Beth Verlag: Berlin, 2011.Search in Google Scholar

[31] Wegner A, Witt G, Karg W. Auffrischstrrategien für Polyamid 12-Pulver, Kunststoffe 2013, 11, 79–78.Search in Google Scholar

[32] Wegner A, Mielicki C, Grimm T, Gronhoff B, Witt G. Wortberg J. Polym. Eng. Sci. 2014, 54, 1540–1555.10.1002/pen.23696Search in Google Scholar

[33] DIN EN ISO 3167. Plastics-Multipurpose Test Specimens, Beth Verlag: Berlin, 2014.Search in Google Scholar

[34] DIN EN ISO 4287. Geometrical Product Specifications (GPS) – Surface texture: Profile Method – Terms, Definitions and Surface Texture Parameters, Beuth Verlag: Berlin, 2010.Search in Google Scholar

[35] DIN EN ISO 527. Plastics – Determination of Tensile Properties – Part 1: General Principle, Beuth Verlag: Berlin, 2012.Search in Google Scholar

Received: 2019-04-02
Accepted: 2019-07-12
Published Online: 2019-08-14
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2019-0110/pdf
Scroll to top button