Abstract
In this study, blends of low-density polyethylene (LDPE)/aluminum nitride (AlN) ceramic nanocomposites have been prepared through melt blending technique. Increased loading of AIN leads to reduction in tensile properties but improvement in rheological property (storage modulus). The rheological behavior tends to become unique at higher frequencies (≥10 rad/s). Differential scanning calorimetry (DSC) results show that the total crystallinity has decreased with the increase in AlN loading in the composites. It is seen that there is an improvement in electrical conductivity, dielectric constant, and flammability properties with the addition of AlN in the nanocomposites. The experimental data of tensile modulus, electrical conductivity, and dielectric constant have been fitted with some available theoretical models to check the models’ applicability for the present composite systems. Results show that only Nicolais-Nicodemo model, McCullough model, and Rahaman-Khastgir model are applicable for predicting the tensile modulus, electrical conductivity, and dielectric constant of the composites, respectively.
Acknowledgments
The authors acknowledge the Deanship of Scientific Research, King Fahd University of Petroleum and Minerals, for support and funding under Project no. IN101018. The authors also acknowledge the Center of Research Excellence in Petroleum Refining and Petrochemicals (CoRE-PRP), King Fahd University of Petroleum and Minerals, for support in this study and the Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, for providing a high-tech polymer research laboratory.
References
[1] Boudenne A, IbosL, Géhin E, Fois M, Majesté JC. J. Mater. Sci. 2005, 40, 4163–4167.10.1007/s10853-005-3818-2Search in Google Scholar
[2] Malucelli G, Palmero P, Ronchetti S, Delmastro A, Montanaro L. Polym. Int. 2010, 59, 1084–1089.Search in Google Scholar
[3] Kovacs JG, Suplicz A. J. Reinf. Palst. Compos. 2013, 16, 1234–1240.10.1177/0731684413489755Search in Google Scholar
[4] Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV. Eur. Polym. J. 2007, 43, 949–958.10.1016/j.eurpolymj.2006.12.015Search in Google Scholar
[5] Suplicz A, Szabo F, Kovacs JG. Thermochim. Acta 2013, 574, 145–150.10.1016/j.tca.2013.10.005Search in Google Scholar
[6] Fang L, Leng Y, Gao P. Biomaterials 2006, 27, 3701–3707.10.1016/j.biomaterials.2006.02.023Search in Google Scholar PubMed
[7] Tjong SC. Mater. Sci. Eng. R 2006, 53, 73–197.10.1016/j.mser.2006.06.001Search in Google Scholar
[8] Yang R, Li Y, Yu J. Polym. Degrad. Stab. 2005, 88, 168–174.10.1016/j.polymdegradstab.2003.12.005Search in Google Scholar
[9] Kontou E, Niaounakis M. Polymer 2006, 47, 1267–1280.10.1016/j.polymer.2005.12.039Search in Google Scholar
[10] Clayton LM, Knudsen B, Cinke M, Meyyappan M, Harmon JP. J. Nanosci. Nanotechnol. 2007, 7, 3572–3579.10.1166/jnn.2007.850Search in Google Scholar PubMed
[11] Othman MBH, Ramli MR, Tyng LY, Ahmad Z,Akil HM. Mater. Des. 2011, 32, 3173–3182.10.1016/j.matdes.2011.02.048Search in Google Scholar
[12] Nayak S, Rahaman M, Pandey AK, Setua DK, Chaki TK, Khastgir D. J. Appl. Polym. Sci. 2013, 127, 784–796.10.1002/app.37777Search in Google Scholar
[13] Ayesh AS, Ibrahim SS, Aljaafari AA. J. Reinf. Plast. Compos. 2013, 6, 359–370.10.1177/0731684412470016Search in Google Scholar
[14] Wu C, Chen YC, Yang CF, Su CC, Diao CC. J. Eur. Ceram. Soc. 2007, 27, 3839–3842.10.1016/j.jeurceramsoc.2007.02.090Search in Google Scholar
[15] Ibrahim SS, Ayesh AS. J. Thermoplast. Compos. Mater. 2015, 28, 225–240.10.1177/0892705713480517Search in Google Scholar
[16] Gao N, Yu X, Jin H, He B, Dong P, Gao C. Mater. Sci. Eng. 2011, 18, 082017.10.1088/1757-899X/18/8/082017Search in Google Scholar
[17] Jeon CJ, Kim ES. J. Korean Ceram. Soc. 2011, 48, 257–262.10.4191/KCERS.2011.48.3.257Search in Google Scholar
[18] Da Silva ALN, Rocha MCG, Moraes MAR, Valente CAR, Coutinho FMB. Polym. Test. 2002, 21, 57–60.10.1016/S0142-9418(01)00047-2Search in Google Scholar
[19] Bigg DM. Polym. Compos. 1987, 8, 115–122.10.1002/pc.750080208Search in Google Scholar
[20] Nicolais L, Nicodemo L. Polym. Eng. Sci. 1973, 13, 469–469.10.1002/pen.760130612Search in Google Scholar
[21] Fornes TD, Paul DR. Polymer 2003, 44, 4993–5013.10.1016/S0032-3861(03)00471-3Search in Google Scholar
[22] Cohen LJ, Ishai O. J. Compos. Mater. 1967, 1, 390–403.10.1177/002199836700100407Search in Google Scholar
[23] McCullough RL. Compos. Sci. Technol. 1985, 22, 3–21.10.1016/0266-3538(85)90087-9Search in Google Scholar
[24] Cho SD, Lee SY, Hyun JG, Paik KW. J. Mater. Sci. Mater. Electron. 2005, 16, 77– 84.10.1007/s10854-005-6454-3Search in Google Scholar
[25] Rahaman M, Chaki TK, Khastgir D. Compos. Sci. Technol. 2012, 72, 1575–1580.10.1016/j.compscitech.2012.06.005Search in Google Scholar
[26] Bueche F. J. Appl. Phys.1972, 43, 4837–4838.10.1063/1.1661034Search in Google Scholar
[27] Rahaman M, Chaki TK, Khastgir D. Eur. Polym. J. 2012, 48, 1241–1248.10.1016/j.eurpolymj.2012.04.016Search in Google Scholar
[28] Hung TV, Frank GS. Microelectron. J. 2002, 33, 409–415.10.1016/S0026-2692(02)00010-1Search in Google Scholar
[29] Khastgir D, Maiti HS, Bandyopadhyay PC. Mater. Sci. Eng. 1988, 100, 245–253.10.1016/0025-5416(88)90263-7Search in Google Scholar
[30] Jayasundere N, Smith BV. J. Appl. Phys. 1993, 73, 2462–2466.10.1063/1.354057Search in Google Scholar
[31] Lestriez B, Maazouz A, Gerard JF, Sautereau H, Boiteux G, Seytre G, Kranbuehl DE. Polymer 1998, 39, 6733–6742.10.1016/S0032-3861(98)00093-7Search in Google Scholar
[32] Shimpi NG, Mishra S. J. Nanopart. Res. 2010, 12, 2093–2099.10.1007/s11051-009-9768-xSearch in Google Scholar
[33] Jeziórska R, Świerz-Motysia B, Zielecka M, Szadkowska A, Studziński M. J. Appl. Polym. Sci. 2012, 125, 4326–4337.10.1002/app.36579Search in Google Scholar
[34] Tjong SC, Liang GD, Bao SP. J. Appl. Polym. Sci. 2006, 102, 1436–1444.10.1002/app.24294Search in Google Scholar
[35] Gu J, Zhang Q, Dang J, Zhang J, Yang Z. Polym. Eng. Sci. 2009, 49, 1030–1034.10.1002/pen.21336Search in Google Scholar
[36] Abdolrasouli MH, Behzadfar E, Nazockdast H, Sharif F. J. Appl. Polym. Sci. 2012, 125[S1], E435–E444.10.1002/app.36510Search in Google Scholar
[37] Osman MA, Atallah A. Polymer 2005, 46, 9476–9488.10.1016/j.polymer.2005.07.030Search in Google Scholar
[38] Zhang Q, Archer LA. Langmuir 2002,18, 10435–10442.10.1021/la026338jSearch in Google Scholar
[39] Aranguren MI, Mora E, De Groot Jr, Macosko CW. J. Rheol. 1992, 36, 1165–1182.10.1122/1.550306Search in Google Scholar
[40] Simhambhatla M, Leonov AI. Rheo. Acta. 1995, 34, 329–338.10.1007/BF00367150Search in Google Scholar
[41] Thomas SP, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S. J. Mater. Sci. 2012, 47, 3344–3349.10.1007/s10853-011-6174-4Search in Google Scholar
[42] Rahaman M, Thomas SP, Hussein IA, De SK. Polym. Compos. 2013, 34, 494–499.10.1002/pc.22447Search in Google Scholar
[43] Zhu BL, Ma J, Wu J, Yung KC, Xie CS. J. Appl. Polym. Sci. 2010, 118, 2754–2764.10.1002/app.32673Search in Google Scholar
[44] Zhu BL, Wang J, Zheng H, Ma J, Wu J, Wu R. Compos. Part B 2015, 69, 496–506.10.1016/j.compositesb.2014.10.035Search in Google Scholar
[45] Kalaprasad, Pradeep P, Mathew G, Pavithran C, Thomas S. Compos. Sci. Technol. 2000, 60, 2967–2977.10.1016/S0266-3538(00)00162-7Search in Google Scholar
[46] Slack GA, Tanzilli RA, Pohl RO, Vandersande JW. J. Phys. Chem. Solids1987, 48, 641–647.10.1016/0022-3697(87)90153-3Search in Google Scholar
[47] Bourbigot S, Duquesne S, Jama C. Macromol. Symp. 2006, 233, 180–190.10.1002/masy.200690016Search in Google Scholar
[48] Bartholmai M, Schartel B. Polym. Adv. Technol. 2004, 15, 355–364.10.1002/pat.483Search in Google Scholar
[49] Sohail OB, Sreekumar PA, De SK, Khan MK, Hakeem A, Alshaiban AA, Al-Harthi MA. J. Nanomater. 2012, Article ID 250364, 7.10.1155/2012/250364Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original articles
- 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
- Studies on the effects of 4,4′-dihydroxyphenyl on crystallization and melting behavior of poly (butylene terephthalate)
- Effect of the particulate morphology of resin on the gelation process of PVC plastisols
- Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites
- Application of polyurethane membrane with surface modified ZSM-5 for pervaporation of phenol/water mixture
- Synergistic effects of hybridization of carbon black and carbon nanotubes on the mechanical properties and thermal conductivity of a rubber blend system
- Electrical conductivity of carbon nanotube/polypropylene composites prepared through microlayer extrusion technology
- Mechanical performance and electromagnetic shielding effectiveness of composites based on Ag-plating cellulose micro-nano fibers and epoxy
- Effect of screw configuration on the dispersion of nanofillers in thermoset polymers
- Study of a novel co-rotating non-twin screw extruder in processing flame retardant polymer materials
- Thermal influences in the star-pre-distributor of a spiral mandrel die
Articles in the same Issue
- Frontmatter
- Original articles
- 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
- Studies on the effects of 4,4′-dihydroxyphenyl on crystallization and melting behavior of poly (butylene terephthalate)
- Effect of the particulate morphology of resin on the gelation process of PVC plastisols
- Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites
- Application of polyurethane membrane with surface modified ZSM-5 for pervaporation of phenol/water mixture
- Synergistic effects of hybridization of carbon black and carbon nanotubes on the mechanical properties and thermal conductivity of a rubber blend system
- Electrical conductivity of carbon nanotube/polypropylene composites prepared through microlayer extrusion technology
- Mechanical performance and electromagnetic shielding effectiveness of composites based on Ag-plating cellulose micro-nano fibers and epoxy
- Effect of screw configuration on the dispersion of nanofillers in thermoset polymers
- Study of a novel co-rotating non-twin screw extruder in processing flame retardant polymer materials
- Thermal influences in the star-pre-distributor of a spiral mandrel die