Abstract
Exfoliated graphite nanoplatelet (GNP) polypropylene (PP)/kenaf fiber (KF) hybrid nanocomposites (PP/KF/MAPP/GNP collectively presented as PKMG) were developed through melt extrusion using a co-rotating screw speed extruder. The loadings of GNPs in nanocomposites were varied from 1–5 phr and characterized for thermal conductivity, stability and behavior, morphology, and heat deflection temperature (HDT). Results revealed increasing effective thermal conductivity with increasing inclusion of GNP. This behavior was attributed to the formation of thermally conductive, interconnected, sheets of GNP which enhanced heat dissipation. Thermal stability analysis revealed high thermal residue content at 3 phr loading attributed to uniform dispersion of GNP sheets in polymer matrix and the formation of enhanced oxygen-barrier due to effective char formation. Results also revealed enhanced HDT (0.46 MPa/1.8 MPa) with increasing incorporation of GNP ascribed to high modulus and thermal stability of GNP sheets. This implies capability of material to sustain loading at high temperatures without losing its rigidity. Thermal behavior revealed increased crystallization temperature and reduced degree of crystallization with slight increase in melting temperature in the range of 2–5°C. Morphological analysis using transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM) revealed exfoliated and uniform dispersion of graphene in matrix polymer at 3 phr loading.
Acknowledgments
The authors are grateful to Universiti Teknologi Malaysia for providing facilities for this research.
References
[1] Wambua P, Ivens J, Verpoest I. Compos. Sci. Technol. 2003, 63, 1259–1264.10.1016/S0266-3538(03)00096-4Search in Google Scholar
[2] Mohantya AK, Misraa M, Hinrichsen G. Macromol. Mater. Eng. 2000, 276/277, 1–24.10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-WSearch in Google Scholar
[3] Rozyanty A, Rozman H, Tay G. Adv. Mater. Res. 2011, 264, 712–718.10.4028/www.scientific.net/AMR.264-265.712Search in Google Scholar
[4] Biswal M, Mohanty S, Nayak S. J. Appl. Polym. Sci. 2012; 125, 432–443.10.1002/app.35246Search in Google Scholar
[5] Guo G, Park C, Lee Y, Kim S, Sain M. Polym. Eng. Sci. 2007, 47, 330–336.10.1002/pen.20712Search in Google Scholar
[6] Gu R, Kokta B, Michalkova D, Dimzoski B, Fortelny I, Slouf M, Krulis Z. J. Reinf. Plast. Compos. 2010, 29, 3566–3586.10.1177/0731684410378543Search in Google Scholar
[7] Mohan D, Lee S, Kang I, Doh G, Park B, Wu Q. J. Korea Oil Chem. Soc. 2007, 24, 278–286.Search in Google Scholar
[8] Kord B. Bioresour. 2011, 6, 1351–1358.10.15376/biores.6.1.584-593Search in Google Scholar
[9] Kord B, Hemmasi A, Ghasemi I. Wood Sci. Technol. 2011, 45, 111–119.10.1007/s00226-010-0309-7Search in Google Scholar
[10] Inuwa M, Hassan A, Wang D, Samsudin, Mohamad Haafiz M, Wong S, Jawaid M. Polym. Degrad. Stab. 2014, 110, 137–148.10.1016/j.polymdegradstab.2014.08.025Search in Google Scholar
[11] Das T, Prusty S. Polym. Plast. Technol. Eng. 2013, 52, 319–331.10.1080/03602559.2012.751410Search in Google Scholar
[12] Duguay A, Nader J, Kizilitas A, Gardner J, Dagher H. Appl. Nanosci. 2014, 4, 279–291.10.1007/s13204-013-0204-2Search in Google Scholar
[13] Kalaitzidou K, Fukushima H, Drzal L. Compos. Part A: Appl. Sci. Manuf. 2007, 38, 1675–1682.10.1016/j.compositesa.2007.02.003Search in Google Scholar
[14] Kiziltas A, Duguay A, Nazari B, Kiziltas D, Gardner J, Dagher A. Proceedings of SPE Automotive Composites Conference and Exhibition (ACCE), 11-13 September 2013, Novi, MI, USA.Search in Google Scholar
[15] Mehdi K, Kyrialli K. Compos. Interfaces 2013, 20, 255–268.10.1080/15685543.2013.795752Search in Google Scholar
[16] Mittal V. Macromol. Mater. Eng. 2014, 17, 206–217.Search in Google Scholar
[17] Galpaya D, Wang M, Liu M, Motta N, Waclawik E, Yan C. Graphene 2012, 1, 30–49.10.4236/graphene.2012.12005Search in Google Scholar
[18] Idumah C, Hassan A, Affam A. Rev. Chem. Eng. 2015, 31, 149–177.10.1515/revce-2014-0038Search in Google Scholar
[19] Lee J, Marroquin J, Rhee K, Park S, Hui D. Compos. Part B: Eng. 2013, 45, 682–687.10.1016/j.compositesb.2012.05.011Search in Google Scholar
[20] Jang Y, Han S, Kim H, Sim I. Polym. Korea 2013, 37, 518–525.10.7317/pk.2013.37.4.518Search in Google Scholar
[21] Bai G, Guo C, Li L. Constr. Build. Mater. 2014, 50, 148–153.10.1016/j.conbuildmat.2013.09.028Search in Google Scholar
[22] Chen IP, Chen Y, Kao N, Wu CW, Zhang HT. Carbon 2015, 90, 16–24.10.1016/j.carbon.2015.03.067Search in Google Scholar
[23] Heerden XV, Badenhorst H. Carbon 2015, 88, 173–184.10.1016/j.carbon.2015.03.006Search in Google Scholar
[24] Liu L, Liao L, Meng Q, Cao B. Carbon 2015, 90, 75–84.10.1016/j.carbon.2015.04.009Search in Google Scholar
[25] Lai CL, Fu YJ, Chen JT, Wang DM, Sun YM, Huang SH, Hung WS, Hu CC, Lee KR. Carbon 2015, 90, 85–93.10.1016/j.carbon.2015.04.006Search in Google Scholar
[26] Paliotta LGB, Tamburrano A, Marra F, Rinaldi A, Balijepalli SK, Kaciulis S, Sarto MS. Carbon 2015, 89, 260–271.10.1016/j.carbon.2015.03.043Search in Google Scholar
[27] Ghasemi I, Kord B. Iran Polym. J. 2009, 18, 683–691.10.1111/j.1365-2583.2009.00938.xSearch in Google Scholar
[28] Najafi B, Kord A, Abdi RS. J. Thermoplast. Compos. Mater. 2012, 25, 717–733.10.1177/0892705711412813Search in Google Scholar
[29] Tanasa F, Zanoaga M, Nechifor M. Rev. Roum. Chim. 2014, 59, 675–682.Search in Google Scholar
[30] Khanjanzadeh H, Tabarsa T, Shakeri A, Omidvar A. Wood Mater. Sci. Eng. 2011, 6, 207–212.10.1080/17480272.2011.606915Search in Google Scholar
[31] Rihayat T, Saari M, Suraya A, Mahmood M, Dahlan KW, Yunus W, Sapuan S. Polym.-Plast. Technol. Eng. 2006, 45, 1323–1326.10.1080/03602550600916159Search in Google Scholar
[32] Gogoi P, Boruah M, Bora C, Dolui S. Prog. Org. Coat. 2014, 77, 87–93.10.1016/j.porgcoat.2013.08.006Search in Google Scholar
[33] Hemmasi A, Khademi-Eslam H, Talaiepoor M, Kord B. J. Reinf. Plast. Compos. 2010, 29, 964–971.10.1177/0731684408101790Search in Google Scholar
[34] Ryu H, Mahapatra S, Yadav S, Cho J. Eur. Polym. J. 2013, 49, 2627–2634.10.1016/j.eurpolymj.2013.06.005Search in Google Scholar
[35] Kalaiuzidou K, Fujushima H, Askeland P, Drzal L. J. Mater. Sci. Lett. 2007, 43, 2895–2907.10.1007/s10853-007-1876-3Search in Google Scholar
[36] Kalaitzidou K, Fukushima H, Drzal L. Compos. Part A: Appl. Sci. Manuf. 2007, 38, 1675–1682.10.1016/j.compositesa.2007.02.003Search in Google Scholar
[37] Brunauer S, Emmett PH, Teller E. J. Am. Chem. Soc. 1938, 60, 309–319.10.1021/ja01269a023Search in Google Scholar
[38] Liang JZ. J. Polym. Eng. 2013, 33, 483–488.10.1515/polyeng-2013-0064Search in Google Scholar
[39] Sheshmani S, Ashori A, Fashapoyeh M. Int. J. Biol. Macromol. 2013, 18, 1–6.10.1016/j.ijbiomac.2013.03.047Search in Google Scholar PubMed
[40] Mu Q, Feng S. Thermochimica Acta 2007, 462, 70.10.1016/j.tca.2007.06.006Search in Google Scholar
[41] Bai F, Li F, Calhoun B, Quirk RP, Cheng SZD. Polymer Handbook, 4th ed. In: John Wiley & Sons, Inc.: New York, 1999.Search in Google Scholar
[42] Tjong SC. Mater. Sci. Eng. 2006, 53, 73.10.1016/j.mser.2006.06.001Search in Google Scholar
[43] Feng H, Wang X, Wu D. Ind. Eng. Chem. Res. 2013, 52, 10160–10171.10.1021/ie400483xSearch in Google Scholar
[44] Karevan M, Kyriaki K. Compos. Interfaces 2013, 20, 255–268.10.1080/15685543.2013.795752Search in Google Scholar
[45] Liang JZ. J. Polym. Eng. 2013, 33, 483–488.10.1515/polyeng-2013-0064Search in Google Scholar
[46] Shi QF, Mou HY, Li QY, Wang JK, Guo WH. J. Appl. Polym. Sci. 2012, 123, 2828–2836.10.1002/app.34807Search in Google Scholar
[47] Wakabayashi K, Dikin PC, Ruoff RS, Ramanathan T, Brinson CL, Torkelson JM. Macromolecules 2008, 41, 1905–1908.10.1021/ma071687bSearch in Google Scholar
[48] Wakabayashi K, Brunner PJ, Masuda J, Hewlett SA, Torkelson JM. Polymer 2010, 51, 5525–5531.10.1016/j.polymer.2010.09.007Search in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original articles
- Preparation and characterization of graphene oxide/PMMA nanocomposites with amino-terminated vinyl polydimethylsiloxane phase interfaces
- Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites
- Synthesis of spherical porous cross-linked glutaraldehyde/poly(vinyl alcohol) hydrogels
- Influence of process parameters on property of PP/EPDM blends prepared by a novel vane extruder
- Influence of processing conditions on heat sealing behavior and resultant heat seal strength for peelable heat sealing of multilayered polyethylene films
- Thermal degradation kinetics and lifetime of HDPE/PLLA/pro-oxidant blends
- Effect of notch sensitivity on the mechanical properties of HA/PEEK functional gradient biocomposites
- The influence of melt mixing on the stability of cellulose acetate and its carbon nanotube composites
- Experimental analysis of resin infusion in air cushion method
- 3D-MID manufacturing via laser direct structuring with nanosecond laser pulses
Articles in the same Issue
- Frontmatter
- Original articles
- Preparation and characterization of graphene oxide/PMMA nanocomposites with amino-terminated vinyl polydimethylsiloxane phase interfaces
- Effect of exfoliated graphite nanoplatelets on thermal and heat deflection properties of kenaf polypropylene hybrid nanocomposites
- Synthesis of spherical porous cross-linked glutaraldehyde/poly(vinyl alcohol) hydrogels
- Influence of process parameters on property of PP/EPDM blends prepared by a novel vane extruder
- Influence of processing conditions on heat sealing behavior and resultant heat seal strength for peelable heat sealing of multilayered polyethylene films
- Thermal degradation kinetics and lifetime of HDPE/PLLA/pro-oxidant blends
- Effect of notch sensitivity on the mechanical properties of HA/PEEK functional gradient biocomposites
- The influence of melt mixing on the stability of cellulose acetate and its carbon nanotube composites
- Experimental analysis of resin infusion in air cushion method
- 3D-MID manufacturing via laser direct structuring with nanosecond laser pulses