Home Synthesis of spherical porous cross-linked glutaraldehyde/poly(vinyl alcohol) hydrogels
Article
Licensed
Unlicensed Requires Authentication

Synthesis of spherical porous cross-linked glutaraldehyde/poly(vinyl alcohol) hydrogels

  • Sadao Araki EMAIL logo , Yuko Shirakura , Harufumi Suzuki and Hideki Yamamoto EMAIL logo
Published/Copyright: February 27, 2016
Become an author with De Gruyter Brill

Abstract

Spherical glutaraldehyde cross-linked poly(vinyl alcohol) (PVA) hydrogels (G-PVA) were prepared in three steps: gelatification, cross-linking, and removal of alginate. Gelatification was carried out by dropping a solution of alginate, PVA, and glutaraldehyde into a calcium chloride solution to form calcium alginate. Calcium alginate gels were prepared at 20°C, 40°C, 60°C, and 80°C to study the effect of gelatification temperature on the formation of pores on the surface of G-PVA. The effect of the alginate content was studied. PVA and glutaraldehyde were cross-linked by immersion of the gels in a solution of H2SO4 and Na2SO4. The effect of sodium alginate and inorganic salts, such as MgSO4 and K2SO4, on the formation of pores on the surface of G-PVA was confirmed.


Corresponding authors: Sadao Araki and Hideki Yamamoto, Faculty of Environmental and Urban Engineering, Department of Chemical, Energy and Environmental Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan, e-mail: (Sadao Araki); (Yideki Yamamoto)

Acknowledgments

This work was partially supported by the MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2012-2016 (S1201026). We appreciate the valuable cooperation of Kuraray Co., Ltd. for this research.

References

[1] Hezaveh H, Muhamad II. Chem. Eng. Res. Des. 2013, 9, 508–519.10.1016/j.cherd.2012.08.014Search in Google Scholar

[2] Killion JA, Geever LM, Cloonan M, Grehan L, Waldron C, Quinn K, Lyons J, Devine DM, Higginbotham CL. J. Polym. Res. 2014, 21, 538.10.1007/s10965-014-0538-9Search in Google Scholar

[3] Kumar M, Tripathi BP, Shahi VK. J. Hazardous Mater. 2009, 172, 1041–1048.10.1016/j.jhazmat.2009.07.108Search in Google Scholar

[4] Zain NAM, Suhaimi MS, Idris A. Process. Biochem. 2011, 46, 2122–2129.10.1016/j.procbio.2011.08.010Search in Google Scholar

[5] Sahmetliogle E, Yuruk H, Toppare L, Cianga I, Yacci Y. Polym. Int. 2006, 53, 2138–2144.10.1002/pi.1644Search in Google Scholar

[6] Khoo K-M, Ting Y-P. Biochem. Eng. J. 2001, 8, 51–59.10.1016/S1369-703X(00)00134-0Search in Google Scholar

[7] Takei T, Ikeda K, Ijima H, Kawakami K, Yoshida M, Hatate Y. Polym. Bull. 2010, 65, 283–291.10.1007/s00289-010-0253-6Search in Google Scholar

[8] Uemura Y, Hamakawa N, Yoshizawa H, Ando H, Ijichi K, Hatate Y. Chem. Eng. Commun. 2000, 177, 1–14.10.1080/00986440008912157Search in Google Scholar

[9] Park JK, Chang HN. Biotechnol. Adv. 2000, 18, 303–319.10.1016/S0734-9750(00)00040-9Search in Google Scholar

[10] Idris A, Zain NAM, Suhaimi MS. Process. Biochem. 2008, 43, 331–338.10.1016/j.procbio.2007.12.008Search in Google Scholar

[11] De Queiroz AAA, Passos ED, Alves SD, Silva GS, Higa OZ, Vitolo M. J. Appl. Polym. Sci. 2006, 102, 1553–1560.10.1002/app.23444Search in Google Scholar

[12] Takei T, Ikeda K, Ijima H, Kawakami K. Process. Biochem. 2011, 46, 566–571.10.1016/j.procbio.2010.10.011Search in Google Scholar

[13] Yamamoto H, Heyamoto N, Yatsuhashi T, Matsui T, Takami Y, Shibata J. Kagaku Kogaku Ronbunshu 2003, 29, 395–399.10.1252/kakoronbunshu.29.395Search in Google Scholar

[14] Yamamoto H, Kushida A, Heyamoto N, Takami Y, Murayama N, Shibata J. Mater. Trans. 2003, 44, 2436–2440.10.2320/matertrans.44.2436Search in Google Scholar

[15] Gotoh T, Nakatani Y, Sakohara S. J. Appl. Polym. Sci. 1998, 69, 895–906.10.1002/(SICI)1097-4628(19980801)69:5<895::AID-APP8>3.0.CO;2-HSearch in Google Scholar

[16] Kishi R, Miura T, Kihara H, Asano T, Shibata M, Yosomiya R. J. Appl. Polym. Sci. 2003, 89, 75–84.10.1002/app.11996Search in Google Scholar

[17] Ichimura K. Die Markromol. Chem. 1987, 188, 763–768.10.1002/macp.1987.021880410Search in Google Scholar

[18] Ichijo H, Suehiro T, Yamauchi A, Ogawa S. J. Appl. Polym. Sci. 1982, 27, 1665–1674.10.1002/app.1982.070270523Search in Google Scholar

[19] Caykara T, Kucuktepe S, Turan E. Polym. Int. 2007, 53, 532–537.10.1002/pi.2166Search in Google Scholar

[20] Kanaya T. Sen’i Gakkaishi 2002, 58, 240–244.10.2115/fiber.58.P_240Search in Google Scholar

[21] Kanaya T, Takeshita H, Nishikoji Y, Ohkura M, Nishida K, Kaji K. Supramol. Sci. 1998, 5, 215–221.10.1016/S0968-5677(98)00009-1Search in Google Scholar

[22] Takeshita H, Kanaya T, Nishida K, Kaji K. Macromolecules 2001, 34, 7894–7898.10.1021/ma010539xSearch in Google Scholar

[23] Pae BJ, Moon TJ, Lee CH, Ko MB, Park M, Lim S, Kim J, Choe CR. Kor. Polym. J. 1997, 5, 126–130.Search in Google Scholar

[24] Gopishetty V, Tokarev I, Minko S. J. Mater. Chem. 2012, 22, 19482–19487.10.1039/c2jm31778hSearch in Google Scholar

Received: 2015-9-22
Accepted: 2015-11-30
Published Online: 2016-2-27
Published in Print: 2016-11-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0413/pdf
Scroll to top button