Electrochemical hydrogen production from humid air using cation-modified graphene oxide membranes
-
Nur Laila Hamidah
Abstract
Water electrolysis is an environment-friendly process of producing hydrogen with zero-carbon emission. Herein, we studied the water vapor electrolysis using a proton-conducting membrane composed of graphene oxide (GO) nanosheets intercalated with cations (Al3+ and Ce3+). We examined the effect of cation introduction on the physical and chemical structures, morphology, thermal and chemical stabilities, and the proton conductivity of stacked GO nanosheet membranes by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoemission spectroscopy (XPS), Raman spectroscopy, atomic force microscopy (AFM), dynamic light scattering (DLS), thermogravimetric-differential thermal analysis (TG-DTA), and electrochemical impedance spectroscopy (EIS). Concentration cell measurements revealed that the cation-modified membranes are pure proton conductors at room temperature. The proton conductivity of a GO membrane was much improved by cation modification. The cation-modified GO membranes, sandwiched with Pt/C electrodes as the cathode and anode, electrolyzed humidified air to produce hydrogen at room temperature, indicating the feasibility of this carbon-based electrochemical device.
Funding source: Kato Foundation for Promotion of Science
Award Identifier / Grant number: KJ-2822
Funding source: Ministry of Education, Culture, Sports, Science and Technology
Award Identifier / Grant number: 18H01835
Funding source: Exploratory Research for Advanced Technology
Award Identifier / Grant number: 19K22087
-
Funding: This work was supported by the JST e-ASIA collaborative research project on functional materials, a Grant-in-Aid for challenging Exploratory Research (19K22087), and a Grant-in-Aid for Scientific Research (B) (18H01835) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. T.K. is also grateful for the support from the Kato Foundation for Promotion of Science (KJ-2822).
References
[1] A. J. Esswein and D. G. Nocera, Chem. Rev.107, 4022 (2007).10.1021/cr050193eSearch in Google Scholar PubMed
[2] T. Hibino, K. Kobayashi, M. Ito, Q. Ma, M. Nagao, M. Fukui, S. Teranishi, ACS Sustain. Chem. Eng.6, 9360 (2018).10.1021/acssuschemeng.8b01701Search in Google Scholar
[3] Y. H. Lee, J. Kim, J. Oh, ACS Appl. Mater. Interfaces10, 33230 (2018).10.1021/acsami.8b10943Search in Google Scholar PubMed
[4] J. Mo, B. I. Stefanov, T. H. M. Lau, T. Chen, S. Wu, Z. Wang, X.-Q. Gong, I. Wilkinson, G. Schmid, S. C. E. Tsang, ACS Appl. Energy Mater.2, 1221 (2019).10.1021/acsaem.8b01777Search in Google Scholar
[5] E. López-Fernández, J. Gil-Rostra, J. P. Espinós, A. R. González-Elipe, A. de Lucas Consuegra, F. Yubero, ACS Catal.10, 6159 (2020).10.1021/acscatal.0c00856Search in Google Scholar
[6] T. Kida, Y. Kuwaki, A. Miyamoto, N. L. Hamidah, K. Hatakeyama, A. T. Quitain, M. Sasaki, A. Urakawa, ACS Sustain. Chem. Eng.6, 11753 (2018).10.1021/acssuschemeng.8b01998Search in Google Scholar
[7] N. A. Kelly. in Advances in hydrogen production, storage and distribution, A. Basile, A. Iulianelli (Eds.), pp. 159–185, Woodhead Publishing, Cambridge (2014).10.1533/9780857097736.2.159Search in Google Scholar
[8] J. Luo, D. A. Vermaas, D. Bi, A. Hagfeldt, W. A. Smith, M. Grätzel, Adv. Energy Mater.6, 1600100 (2016).10.1002/aenm.201600100Search in Google Scholar
[9] F. Barbir, Sol. Energy78, 661 (2005).10.1016/j.solener.2004.09.003Search in Google Scholar
[10] A. R. Kim, M. Vinothkannan, D. J. Yoo, J. Energy Chem.27, 1247 (2018).10.1016/j.jechem.2018.02.020Search in Google Scholar
[11] R. Hariprasad, M. Vinothkannan, A. R. Kim, D. J. Yoo, J. Dispers. Sci. Technol.1 (2019).Search in Google Scholar
[12] M. Vinothkannan, A. R. Kim, K. S. Nahm, D. J. Yoo, RSC Adv.6, 108851 (2016).10.1039/C6RA22295ASearch in Google Scholar
[13] S. Chabi, A. G. Wright, S. Holdcroft, M. S. Freund, ACS Appl. Mater. Interfaces9, 26749 (2017).10.1021/acsami.7b04402Search in Google Scholar PubMed
[14] Y. Shi, Z. Lu, L. Guo, C. Yan, Int. J. Hydrog. Energy42, 26183 (2017).10.1016/j.ijhydene.2017.08.205Search in Google Scholar
[15] M. R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, S. Noro, T. Yamada, H. Kitagawa, S. Hayami, J. Am. Chem. Soc.135, 8097 (2013).10.1021/ja401060qSearch in Google Scholar PubMed
[16] N. L. Hamidah, M. Shintani, A. S. Ahmad Fauzi, E. G. Mission, K. Hatakeyama, A. T. Quitain, T. Kida, SN Appl. Sci.1, 630 (2019).10.1007/s42452-019-0641-ySearch in Google Scholar
[17] K. Hatakeyama, M. R. Karim, C. Ogata, H. Tateishi, A. Funatsu, T. Taniguchi, M. Koinuma, S. Hayami, Y. Matsumoto, Angew. Chem. Int. Ed.53, 6997 (2014).10.1002/anie.201309931Search in Google Scholar PubMed
[18] K. Hatakeyama, M. Razaul Karim, C. Ogata, H. Tateishi, T. Taniguchi, M. Koinuma, S. Hayami, Y. Matsumoto, Chem. Commun.50, 14527 (2014).10.1039/C4CC07273ASearch in Google Scholar PubMed
[19] M. Vinothkannan, A. R. Kim, G. Gnana kumar, J.-M. Yoon, D. J. Yoo, RSC Adv.7, 39034 (2017).10.1039/C7RA07063BSearch in Google Scholar
[20] S. Zheng, Q. Tu, J. J. Urban, S. Li, B. Mi, ACS Nano11, 6440 (2017).10.1021/acsnano.7b02999Search in Google Scholar PubMed
[21] K. Guan, Q. Liu, Y. Ji, M. Zhang, Y. Wu, J. Zhao, G. Liu, W. Jin, ChemSusChem11, 2315 (2018).10.1002/cssc.201800479Search in Google Scholar PubMed
[22] B. Lian, S. De Luca, Y. You, S. Alwarappan, M. Yoshimura, V. Sahajwalla, S. C. Smith, G. Leslie, R. K. Joshi, Chem. Sci.9, 5106 (2018).10.1039/C8SC00545ASearch in Google Scholar
[23] S. Park, K.-S. Lee, G. Bozoklu, W. Cai, S. T. Nguyen, R. S. Ruoff, ACS Nano2, 572 (2008).10.1021/nn700349aSearch in Google Scholar PubMed
[24] W. Yu, T. (Yet) Yu, N. Graham, 2D Mater.4, 045006 (2017).10.1088/2053-1583/aa814cSearch in Google Scholar
[25] N. L. Hamidah, M. Shintani, A. S. Ahmad Fauzi, G. K. Putri, S. Kitamura, K. Hatakeyama, M. Sasaki, A. T. Quitain, T. Kida, ACS Appl. Nano Mater. (2020).Search in Google Scholar
[26] A. Miyamoto, Y. Kuwaki, T. Sano, K. Hatakeyama, A. Quitain, M. Sasaki, T. Kida, ACS Omega2, 2994 (2017).10.1021/acsomega.7b00239Search in Google Scholar PubMed PubMed Central
[27] X. He, G. He, A. Zhao, F. Wang, X. Mao, Y. Yin, L. Cao, B. Zhang, H. Wu, Z. Jiang, ACS Appl. Mater. Interfaces9, 27676 (2017).10.1021/acsami.7b06424Search in Google Scholar PubMed
[28] Y. Ikada, Y. Nishizaki, H. Iwata, I. Sakurada, J. Polym. Sci. Polym. Chem. Ed.15, 451 (1977).10.1002/pol.1977.170150220Search in Google Scholar
[29] J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, P.-H. Tan, Chem. Soc. Rev.47, 1822 (2018).10.1039/C6CS00915HSearch in Google Scholar
[30] S. Wang, Y. Dong, C. He, Y. Gao, N. Jia, Z. Chen, W. Song, RSC Adv.7, 53643 (2017).10.1039/C7RA10505CSearch in Google Scholar
[31] S. Ozcan, S. Vempati, A. Çırpan, T. Uyar, Phys. Chem. Chem. Phys.20, 7559 (2018).10.1039/C7CP08334CSearch in Google Scholar
[32] D. Krishnan, K. Raidongia, J. Shao, J. Huang, ACS Nano8, 449 (2014).10.1021/nn404805pSearch in Google Scholar PubMed
[33] S. Gupta, V. (Ravi) Subramanian, ACS Appl. Mater. Interfaces6, 18597 (2014).10.1021/am503396rSearch in Google Scholar PubMed
[34] P. Bhawal, S. Ganguly, T. K. Chaki, N. C. Das, RSC Adv.6, 20781 (2016).10.1039/C5RA24914GSearch in Google Scholar
[35] C. K. Chua, M. Pumera, Chem. Soc. Rev.42, 3222 (2013).10.1039/c2cs35474hSearch in Google Scholar PubMed
[36] M. R. Karim, Md. S. Islam, K. Hatakeyama, M. Nakamura, R. Ohtani, M. Koinuma, S. Hayami, J. Phys. Chem. C120, 21976 (2016).10.1021/acs.jpcc.6b06301Search in Google Scholar
[37] G. Jiang, M. Goledzinowski, F. J. E. Comeau, H. Zarrin, G. Lui, J. Lenos, A. Veileux, G. Liu, J. Zhang, S. Hemmati, J. QiaoZ. Chen, Adv. Funct. Matter.26, 1729 (2016).10.1002/adfm.201504604Search in Google Scholar
[38] K. Hatakeyama, H. Tateishi, T. Taniguchi, M. Koinuma, T. Kida, S. Hayami, H. Yokoi, Y., Matsumoto, Chem. Mater.26, 5598 (2014).10.1021/cm502098eSearch in Google Scholar
© 2020 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/
Articles in the same Issue
- Frontmatter
- In this issue
- Conference papers
- Electrochemical hydrogen production from humid air using cation-modified graphene oxide membranes
- To separate or not to separate: what is necessary and enough for a green and sustainable extraction of bioactive compounds from Brazilian citrus waste
- Ionic liquids: green solvents and reactive compounds? Reaction of tri-n-butylmethylphosphonium dimethylphosphate with elemental sulfur
- Ion exchange capacity of zeolite A with zinc nitrate and its antimicrobial activity
- IUPAC Recommendations
- End-of-line hyphenation of chemical names (IUPAC Recommendations 2020)
- Vocabulary of radioanalytical methods (IUPAC Recommendations 2020)
- IUPAC Technical Reports
- IUPAC/CITAC Guide: Evaluation of risks of false decisions in conformity assessment of a multicomponent material or object due to measurement uncertainty (IUPAC Technical Report)
- Variation of lead isotopic composition and atomic weight in terrestrial materials (IUPAC Technical Report)
Articles in the same Issue
- Frontmatter
- In this issue
- Conference papers
- Electrochemical hydrogen production from humid air using cation-modified graphene oxide membranes
- To separate or not to separate: what is necessary and enough for a green and sustainable extraction of bioactive compounds from Brazilian citrus waste
- Ionic liquids: green solvents and reactive compounds? Reaction of tri-n-butylmethylphosphonium dimethylphosphate with elemental sulfur
- Ion exchange capacity of zeolite A with zinc nitrate and its antimicrobial activity
- IUPAC Recommendations
- End-of-line hyphenation of chemical names (IUPAC Recommendations 2020)
- Vocabulary of radioanalytical methods (IUPAC Recommendations 2020)
- IUPAC Technical Reports
- IUPAC/CITAC Guide: Evaluation of risks of false decisions in conformity assessment of a multicomponent material or object due to measurement uncertainty (IUPAC Technical Report)
- Variation of lead isotopic composition and atomic weight in terrestrial materials (IUPAC Technical Report)