Home Mathematics Hermite-Hadamard type inequalities for interval-valued fractional integrals with respect to another function
Article
Licensed
Unlicensed Requires Authentication

Hermite-Hadamard type inequalities for interval-valued fractional integrals with respect to another function

  • Tuba Tunç
Published/Copyright: December 4, 2022
Become an author with De Gruyter Brill

Abstract

In this paper, first we define interval-valued left-sided and right-sided fractional integrals of a function with respect to the another function. Then, we handle Hermite-Hadamard type inequalities via these definitions.

  1. ( Communicated by Tomasz Natkaniec )

References

[1] Aubin, J. P.—Cellina, A.: Differential Inclusions, Springer, New York, 1984.10.1007/978-3-642-69512-4Search in Google Scholar

[2] Azpeitia, A. G.: Convex functions and the Hadamard inequality, Rev. Colombiana Math. 28 (1994), 7–12.Search in Google Scholar

[3] Breckner, W. W.: Continuity of generalized convex and generalized concave set-valued functions, Rev. Anal. Numér. Théor. Approx. 22 (1993), 39–51.Search in Google Scholar

[4] Budak, H.—Tunç, T.—Sarikaya, M. Z.: Fractional Hermite-Hadamard type inequalities for interval-valued functions, Proc. Amer. Math. Soc. 148 (2020), 705–718.10.1090/proc/14741Search in Google Scholar

[5] Chalco-Cano, Y.—Flores-Franulič, A.—Román-Flores, H.: Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math. 31 (2012), 457–472.Search in Google Scholar

[6] Chalco-Cano, Y.—Lodwick, W. A.—Condori-Equice, W.: Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput. 19 (2015), 3293–3300.10.1007/s00500-014-1483-6Search in Google Scholar

[7] Chen, F.—Wu, S.: Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl. 9 (2016), 705–716.10.22436/jnsa.009.02.32Search in Google Scholar

[8] Costa, T. M.: Jensen’s inequality type integral for fuzzy interval-valued functions, Fuzzy Sets and Systems 327 (2017), 31–47.10.1016/j.fss.2017.02.001Search in Google Scholar

[9] Costa, T. M.—Román-Flores, H.: Some integral inequalities for fuzzy-interval-valued functions, Inform. Sci. 420 (2017), 110–125.10.1016/j.ins.2017.08.055Search in Google Scholar

[10] Dinghas, A.: Zum Minkowskischen Integralbegriff abgeschlossener Mengen, Math. Z. 66 (1956), 173–188.10.1007/BF01186606Search in Google Scholar

[11] Dragomir, S. S.—Pearce, C. E. M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University, 2000.Search in Google Scholar

[12] Dragomir, S. S.: Inequalities of Hermite-Hadamard type for h-convex functions on linear spaces, Proyecciones J. Math. 37 (2015), 343–341.10.4067/S0716-09172015000400002Search in Google Scholar

[13] Dragomir, S. S.—Pečarić, J.—Persson, L. E.: Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335–341.Search in Google Scholar

[14] Flores-Franulič, A.—Chalco-Cano, Y.—Román-Flores, H.: An Ostrowski type inequality for interval-valued functions, IFSA World Congress and NAFIPS Annual Meeting IEEE 35 (2013), 1459–1462.10.1109/IFSA-NAFIPS.2013.6608617Search in Google Scholar

[15] Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann, J. Math. Pures. et Appl. 58 (1893), 171–215.Search in Google Scholar

[16] Jaulin, L.—Kieffer, M.—Didrit, O.—Walter, E.: Applied Interval Analysis: with Examples in Parameter and State Estimation, Robust Control and Robotics, Vol. 1. Springer Science & Business Media, 2001.10.1007/978-1-4471-0249-6Search in Google Scholar

[17] Kilbas, A. A.—Marichev, O. I.—Samko, S. G.: Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Switzerland, 1993.Search in Google Scholar

[18] Kirmaci, U. S.—Bakula, M. K.—Özdemir, M. E.—Pečarić, J.: Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007), 26–35.10.1016/j.amc.2007.03.030Search in Google Scholar

[19] Lupulescu, V.: Fractional calculus for interval-valued functions, Fuzzy Sets and Systems 265 (2015), 63–85.10.1016/j.fss.2014.04.005Search in Google Scholar

[20] Markov, S.: On the algebraic properties of convex bodies and some applications, J. Convex Analysis 7 (2000), 129–166.Search in Google Scholar

[21] Markov, S.: Calculus for interval functions of a real variable, Computing 22 (1979), 325–377.10.1007/BF02265313Search in Google Scholar

[22] Merlet, J. P.: Interval analysis for certified numerical solution of problems in robotics, Int. J. Appl. Math. Comput. Sci. 19 (2009), 399–412.10.2478/v10006-009-0033-3Search in Google Scholar

[23] Mitroi, F. C.—Nikodem, K.—Wąsowicz, S.: Hermite–Hadamard inequalities for convex set-valued functions, Demonstratio Math. XLVI (2013), 655–662.10.1515/dema-2013-0483Search in Google Scholar

[24] Moore, R. E.: Interval Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966.Search in Google Scholar

[25] Moore, R. E.—Kearfott, R. B.—Cloud, M. J.: Introduction to Interval Analysis, Vol. 110. Siam, 2009.10.1137/1.9780898717716Search in Google Scholar

[26] Nikodem, K.: On midpoint convex set-valued functions, Aequationes Math. 33 (1987), 46–56.10.1007/BF01836150Search in Google Scholar

[27] Nikodem, K.—Sánchez, J. L.—Sánchez, L.: Jensen and Hermite-Hadamard inequalities for strongly convex set-valued maps, Math. Aeterna 4.8 (2014), 979–987.Search in Google Scholar

[28] Osuna-Gómez, R.—Jiménez-Gamero, M. D.—Chalco-Cano, Y.—Rojas-Medar, M. A.: Hadamard and Jensen inequalities for s-convex fuzzy processes. In: Soft Methodology and Random Information Systems, Springer, Berlin, 2004, 645–652.10.1007/978-3-540-44465-7_80Search in Google Scholar

[29] Park, C.: Set-valued additive ρ-functional inequalities, J. Fixed Point Theory Appl. 20 (2018), 12 pages.10.1007/s11784-018-0547-0Search in Google Scholar

[30] Pavić, Z.: Improvements of the Hermite-Hadamard inequality, J. Inequal. Appl. 2015:222 (2015), 11 pages.10.1186/s13660-015-0742-0Search in Google Scholar

[31] Pečarić, J. E.—Proschan, F.—Tong, Y. L. Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.Search in Google Scholar

[32] Piątek, B.: On the Riemann Integral of Set-valued Functions. Zeszyty Naukowe, Matematyka Stosowana/Politechnika Ślaska, 2012.Search in Google Scholar

[33] Piątek, B.: On the Sincov functional equation, Demonstratio Math. XXXVIII (2005), 875–882.10.1515/dema-2005-0411Search in Google Scholar

[34] Román-Flores, H.—Chalco-Cano, Y.—Lodwick, W. A.: Some integral inequalities for interval-valued functions, Comput. Appl. Math. 37 (2018), 1306–1318.10.1007/s40314-016-0396-7Search in Google Scholar

[35] Román-Flores, H.—Chalco-Cano, Y.—Silva, G. N.: A note on Gronwall type inequality for interval-valued functions, IFSA World Congress and NAFIPS Annual Meeting IEEE 35 (2013), 1455–1458.10.1109/IFSA-NAFIPS.2013.6608616Search in Google Scholar

[36] Sadowska, E.: Hadamard inequality and a refinement of Jensen inequality for set-valued functions, Results Math. 32 (1997), 332–337.10.1007/BF03322144Search in Google Scholar

[37] Sarikaya, M. Z.—Set, E.—Yaldiz, H.—Basak, N.: Hermite -Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling 57 (2013), 2403–2407.10.1016/j.mcm.2011.12.048Search in Google Scholar

[38] Snyder, J. M.: Interval analysis for computer graphics, SIGGRAPH Comput. Graph 26 (1992), 121–130.10.1145/133994.134024Search in Google Scholar

[39] Tseng, K. L.—Hwang, S. R.: New Hermite-Hadamard inequalities and their applications, Filomat 30 (2016), 3667–3680.10.2298/FIL1614667TSearch in Google Scholar

[40] Yang, G. S.—Tseng, K. L.: On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl. 239 (1999), 180–187.10.1006/jmaa.1999.6506Search in Google Scholar

[41] Zhao, D.—An, T.—Ye, G.—Liu, W.: New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl. 2018:302 (2018), 14 pages.10.1186/s13660-018-1896-3Search in Google Scholar

[42] Zhao, D.—Ye, G.—Liu, W.—Tores, D. F. M.: Some inequalities for interval-valued functions on time scales, Soft Comput. 23 (2019), 6005–6015.10.1007/s00500-018-3538-6Search in Google Scholar

Received: 2021-08-09
Accepted: 2021-11-29
Published Online: 2022-12-04
Published in Print: 2022-12-16

© 2022 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0102/pdf
Scroll to top button