Home Mathematics On the Diophantine equation x2 + C= yn for C = 2a3b17c and C = 2a13b17c
Article
Licensed
Unlicensed Requires Authentication

On the Diophantine equation x2 + C= yn for C = 2a3b17c and C = 2a13b17c

  • Hemar Godinho EMAIL logo , Diego Marques and Alain Togbé
Published/Copyright: August 23, 2016
Become an author with De Gruyter Brill

Abstract

In this paper, we find all solutions of the Diophantine equation x2 + C= yn in integers x, y ≥ 1, a, b, c ≥ 0, n ≥ 3, with gcd(x, y) = 1, when C= 2a3b17c and C = 2a13b17c.

MSC 2010: Primary 11D61; 11Y50

The first author thanks FAP-DF and CNPq-Brazil for financial support.

The second author thanks FEMAT, FAP-DF and CNPq-Brazil for financial support.

The third author was partially supported by Purdue University Northwest.



(Communicated by Stanislav Jakubec)


Acknowledgement

The authors are grateful to the referee for helpful suggestions which improved the article.

References

[1] Abu Muriefah, F. S.: On the Diophantine equationx2 + 52k = yn, Demonstratio Math. 39 (2006), 285–289.10.1515/dema-2006-0206Search in Google Scholar

[2] Abu Muriefah, F. S.—Arif, S. A.: The Diophantine equationx2 + 52k+1 = yn, Indian J. Pure Appl. Math. 30 (1999), 229–231.10.1515/dema-2006-0206Search in Google Scholar

[3] Abu Muriefah, F. S.—Luca, F.—Togbé, A.: On the Diophantine equationx2 + 5a · 13b = yn, Glasg. Math. J. 50 (2006), 175–181.10.1017/S0017089507004028Search in Google Scholar

[4] Arif, S. A.—Abu Muriefah, F. S.: On the Diophantine equationx2 + q2k+1 = yn, J. Number Theory 95 (2002), 95–100.10.1006/jnth.2001.2750Search in Google Scholar

[5] Arif, S. A—Abu Muriefah, F. S.: On the Diophantine equationx2 + 3m = yn, Int. J. Math. Math. Sci. 21 (1998), 619–620.10.1155/S0161171298000866Search in Google Scholar

[6] Arif, S. A.—Abu Muriefah, F. S.: On a Diophantine equation, Bull. Aust. Math. Soc. 57 (1998), 189–198.10.1017/S0004972700031580Search in Google Scholar

[7] Arif, S. A.—Abu Muriefah, F. S.: On the Diophantine equation x2 + 2k = yn, Int. J. Math. Math. Sci. 20 (1997), 299–304.10.1155/S0161171297000409Search in Google Scholar

[8] Bilu, Yu.—Hanrot, G.—Voutier, P.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte), J. Reine Angew. Math. 539 (2001), 75–122.10.1515/crll.2001.080Search in Google Scholar

[9] Birkhoff, G. D.—Vandiver, H. S.: On the Integral Divisors ofanbn, Ann. of Math. 5 (4) (1904), 173–180.10.2307/2007263Search in Google Scholar

[10] Bugeaud, Y.—Mignotte, M.—Siksek, S.: Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell Equation, Compos. Math. 142 (2006), 31–62.10.1112/S0010437X05001739Search in Google Scholar

[11] Cangül, I. N.—Demirci, M.—Soydan, G.—Tzanakis, N.: The Diophantine equationx2 + 5a · 11b = yn, Funct. Approx. Comment. Math. 43 (2010), 209–225.10.7169/facm/1291903397Search in Google Scholar

[12] Cangül, I. N.—Demirci, M.—Luca, F.—Pintér, A.—Soydan, G.: On the Diophantine equationx2 + 2a · 11b = yn, Fibonacci Quart. 48 (2010), 39–46.10.1080/00150517.2010.12428127Search in Google Scholar

[13] Cangül, I. N.—Demirci, M.—Inam, I.—Luca, F.—Soydan, G.: On the Diophantine equationx2 + 2a · 3b · 11c = yn, Math. Slovaca 63 (2013) 647–659.10.2478/s12175-013-0125-2Search in Google Scholar

[14] Cannon, J.—Playoust, C.: MAGMA: a new computer algebra system, Euromath. Bull. 2 (1996) 113–144.Search in Google Scholar

[15] Carmichael, R. D.: On the Numerical Factors of the Arithmetic Formsαn ± βn Ann. of Math. (2) 15 (1913-1914), 30–48.10.2307/1967797Search in Google Scholar

[16] Carmichael, R. D.: On the Numerical Factors of the Arithmetic Formsαn ± βn, Ann. of Math. (2) 15 (1913-1914), 49–70.10.2307/1967798Search in Google Scholar

[17] Cohn, J. H. E.: The Diophantine equationx2 + C = yn, Acta Arith. 55 (1993), 367–381.10.4064/aa-65-4-367-381Search in Google Scholar

[18] Dabrowski, A.: On the Lebesgue-Nagell equation, Colloq. Math. 125 (2011), 245–253.10.4064/cm125-2-9Search in Google Scholar

[19] Godinho, H.—Marques, D.—Togbé, A.: On the Diophantine equationx2+ 2a5b17c = yn, Commun. Math. 20 (2012), 81–88.Search in Google Scholar

[20] Goins, E.—Luca, F.—Togbé, A.: On the Diophantine equationx2+ 2±5²13³ = yn. In: Algorithmic Number Theory. Lecture Notes in Comput. Sci. 5011/2008, Springer, Heidelberg, 2008, pp. 430–442.10.1007/978-3-540-79456-1_29Search in Google Scholar

[21] Le, M.: On Cohn's conjecture concerning the Diophantinex2 + 2m = yn, Arch. Math. (Basel) 78 (2002), 26–35.10.1007/s00013-002-8213-5Search in Google Scholar

[22] Le, M.: An exponential Diophantine equation, Bull. Aust. Math. Soc. 64 (2001), 99–105.10.1017/S0004972700019717Search in Google Scholar

[23] Luca, F.: On a Diophantine equation, Bull. Aust. Math. Soc. 61 (2000), 241–246.10.1017/S0004972700022231Search in Google Scholar

[24] Luca, F.: On the Diophantine equationx2+ 2a · 3b =yn, Int. J. Math. Math. Sci. 29 (2002), 239–244.10.1155/S0161171202004696Search in Google Scholar

[25] Luca, F.—Togbé, A.: On the Diophantine equationx2 + 2a · 5b = yn, Int. J. Number Theory 4 (2008), 973–979.10.1142/S1793042108001791Search in Google Scholar

[26] Luca, F.—Togbé, A.: On the Diophantine equationx2 + 72k = yn, Fibonacci Quart. 54 (2007), 322–326.10.1080/00150517.2007.12428201Search in Google Scholar

[27] Pink, I.—Rábai, Z.: On the Diophantine equationx2 + 5k 17l = yn, Commun. Math. 19 (2011), 1–9.Search in Google Scholar

[28] Tengely, Sz.: On the Diophantine equationx2 + a2 = 2yp, Indag. Math. (N.S.) 15 (2004), 291–304.10.1016/S0019-3577(04)90021-3Search in Google Scholar

Received: 2012-11-13
Accepted: 2014-1-5
Published Online: 2016-8-23
Published in Print: 2016-6-1

© 2016 Mathematical Institute Slovak Academy of Sciences

Articles in the same Issue

  1. Research Article
  2. On the vertex-to-edge duality between the Cayley graph and the coset geometry of von Dyck groups
  3. Research Article
  4. Characterization of hereditarily reversible posets
  5. Research Article
  6. Families of sets which can be represented as sublattices of the lattice of convex subsets of a linearly ordered set
  7. Research Article
  8. Diophantine equation X4+Y4 = 2(U4 + V4)
  9. Research Article
  10. On the congruent number problem over integers of cyclic number fields
  11. Research Article
  12. On the Diophantine equation x2 + C= yn for C = 2a3b17c and C = 2a13b17c
  13. Research Article
  14. Representations and evaluations of the error term in a certain divisor problem
  15. Research Article
  16. A construction of a Peano curve
  17. Research Article
  18. Compositions of ϱ-upper continuous functions
  19. Research Article
  20. Products of Świa̧tkowski functions
  21. Research Article
  22. Subclasses of meromorphically p-valent functions involving a certain linear operator
  23. Research Article
  24. Oscillation results for second-order mixed neutral differential equations with distributed deviating arguments
  25. Research Article
  26. Oscillation criteria for higher order nonlinear delay dynamic equations on time scales
  27. Research Article
  28. On the solutions of a fourth order parabolic equation modeling epitaxial thin film growth
  29. Research Article
  30. Meromorphic solutions of q-shift difference equations
  31. Research Article
  32. Oscillation criteria for higher-order nonlinear delay dynamic equations on time scales
  33. Research Article
  34. Multiplier spaces and the summing operator for series
  35. Research Article
  36. Weighted αβ-statistical convergence of Kantorovich-Mittag-Leffler operators
  37. Research Article
  38. The local spectral radius of a nonnegative orbit of compact linear operators
  39. Research Article
  40. A note on Lie product preserving maps on Mn(ℝ)
  41. Research Article
  42. On vector optimality conditions for constrained problems with -stable data
  43. Research Article
  44. Reparameterization of weakly nonlinear regression models with constraints
  45. Research Article
  46. Convolutions of polynomial kernels
  47. Research Article
  48. Closed form evaluation of sums containing squares of Fibonomial coefficients
Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0159/pdf
Scroll to top button