Home The FAIR framework: ethical hybrid peer review
Article Open Access

The FAIR framework: ethical hybrid peer review

This erratum corrects the original online version which can be found here: https://doi.org/10.1515/jpm-2025-0285
  • Amos Grünebaum EMAIL logo , Joachim Dudenhausen and Frank A. Chervenak
Published/Copyright: December 2, 2025

Corrigendum to: Grünebaum A, Dudenhausen J, Chervenak FA. The FAIR framework: ethical hybrid peer review. J Perinat Med. 2025;53 (8):993–999. (DOI: 10.1515/jpm-2025-0285).

Corrigendum text: The authors regret that the originally published reference list contained inaccuracies. The correct and updated reference list is provided here and replaces the previously published version in its entirety.

The FAIR framework: ethical hybrid peer review

https://www.degruyterbrill.com/document/doi/10.1515/jpm-2025-0285/html


Corresponding author: Amos Grünebaum, MD, Northwell Health, Zucker School of Medicine, Hempstead, NY, USA, E-mail:

References

1. Lee, CJ, Sugimoto, CR, Zhang, G, Cronin, B. Bias in peer review. J Am Soc Inf Sci Technol 2013;64:2–17. https://doi.org/10.1002/asi.22784.Search in Google Scholar

2. Drozdz, JA, Ladomery, MR. The peer review process: past, present, and future. Br J Biomed Sci 2024;81:12054. https://doi.org/10.3389/bjbs.2024.12054.Search in Google Scholar PubMed PubMed Central

3. Smith, R. Peer review: a flawed process at the heart of science and journals. J R Soc Med 2006;99:178–82. https://doi.org/10.1177/014107680609900414.Search in Google Scholar PubMed PubMed Central

4. Link, AM. US and non-US submissions: an analysis of reviewer bias. JAMA 1998;280:246–7. https://doi.org/10.1001/jama.280.3.246.Search in Google Scholar PubMed

5. Opthof, T, Coronel, R, Janse, MJ. The significance of the peer review process against the background of bias: priority ratings of reviewers and editors and the prediction of citation, the role of geographical bias. Cardiovasc Res 2002;56:339–46. https://doi.org/10.1016/s0008-6363(02)00712-5.Search in Google Scholar PubMed

6. Korfitsen, CB, Nejstgaard, CH, Hróbjartsson, A, Boutron, I, Bero, L, Lundh, A. Peer reviewers’ conflicts of interest in biomedical research: scoping review. BMJ Evid Based Med 2025;30:104–17. https://doi.org/10.1136/bmjebm-2024-112967.Search in Google Scholar PubMed

7. Malički, M, Aalbersberg, IJ, Bouter, L, Mulligan, A, Ter, RG. Transparency in conducting and reporting research: a survey of authors, reviewers, and editors across scholarly disciplines. PLoS One. 2023;18:e0270054. https://doi.org/10.1371/journal.pone.0270054. Erratum in: PLoS One. 2023;18:e0283443. 10.1371/journal.pone.0283443.Search in Google Scholar PubMed PubMed Central

8. Aczel, B, Szaszi, B, Holcombe, AO. A billion-dollar donation: estimating the cost of researchers’ time spent on peer review. Res Integr Peer Rev 2021;6:14. https://doi.org/10.1186/s41073-021-00118-2.Search in Google Scholar PubMed PubMed Central

9. Stahel, PF, Moore, EE. Peer review for biomedical publications: we can improve the system. BMC Med 2014;12:179. https://doi.org/10.1186/s12916-014-0179-1.Search in Google Scholar PubMed PubMed Central

10. Manchikanti, L, Kaye, AD, Boswell, MV, Hirsch, JA. Medical journal peer review: process and bias. Pain Physician 2015;18:E1–14.10.36076/ppj/2015.18.E1Search in Google Scholar

11. Glonti, K, Cauchi, D, Cobo, E, Boutron, I, Moher, D, Hren, D. A scoping review on the roles and tasks of peer reviewers in the manuscript review process in biomedical journals. BMC Med 2019;17:118. https://doi.org/10.1186/s12916-019-1347-0.Search in Google Scholar PubMed PubMed Central

12. Kemal, Ö. Artificial intelligence in peer review: ethical risks and practical limits. Turk Arch Otorhinolaryngol 2025;63:108–9. https://doi.org/10.4274/tao.2025.2025-8-12.Search in Google Scholar PubMed PubMed Central

13. Bauchner, H, Rivara, FP. Use of artificial intelligence and the future of peer review. Health Aff Sch 2024;2:qxae058. https://doi.org/10.1093/haschl/qxae058.Search in Google Scholar PubMed PubMed Central

14. Eggmann, F, Hildebrand, H, Bornstein, MM. Who reviewed this? Toward responsible integration of large language models for peer review of scientific articles in dental medicine. Swiss Dent J 2025;135:1–15. https://doi.org/10.61872/sdj-2025-03-01.Search in Google Scholar PubMed

15. Silverman, JA, Ali, SA, Rybak, A, van Goudoever, JB, Leleiko, NS, JPGN Editorial Board. Generative AI: potential and pitfalls in academic publishing. J Pediatr Gastroenterol Nutr 2023;77:573–4. https://doi.org/10.1097/MPG.0000000000003931.Search in Google Scholar PubMed

16. Amann, J, Blasimme, A, Vayena, E, Frey, D, Madai, VI. Precise4Q consortium. Explainability for artificial intelligence in healthcare: a multidisciplinary perspective. BMC Med Inform Decis Mak 2020;20:310. https://doi.org/10.1186/s12911-020-01332-6.Search in Google Scholar PubMed PubMed Central

17. Doshi-Velez, F, Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017;1702:08608. https://doi.org/10.48550/arXiv.1702.08608.Search in Google Scholar

18. Marcus, G. The next decade in AI: four steps towards robust artificial intelligence. arXiv 2020 2002:06177. https://doi.org/10.48550/arXiv.2002.06177.Search in Google Scholar

19. Bender, EM, Gebru, T, McMillan-Major, A, Mitchell, M. On the dangers of stochastic parrots: can language models be too big? Proc ACM Conf Fairness Accountability Transparency 2021:610–23. https://doi.org/10.1145/3442188.3445922.Search in Google Scholar

20. Cullis, PS, Gudlaugsdottir, K, Andrews, J. A systematic review of the quality of conduct and reporting of systematic reviews and meta-analyses in paediatric surgery. PLoS One 2017;12:e0175213. https://doi.org/10.1371/journal.pone.0175213.Search in Google Scholar PubMed PubMed Central

21. Lerback, J, Hanson, B. Journals invite too few women to referee. Nature 2017;541:455–7. https://doi.org/10.1038/541455a.Search in Google Scholar PubMed

22. Tomkins, A, Zhang, M, Heavlin, B. Reviewer bias in single- versus double-blind peer review. Proc Natl Acad Sci U S A. 2017;114:12708–13. https://doi.org/10.1073/pnas.1707323114.Search in Google Scholar PubMed PubMed Central

23. Nguyen, VM, Haddaway, NR, Gutowsky, LFG, Wilson, ADM, Gallagher, AJ, Donaldson, MR, et al.. How long is too long in contemporary peer review? Perspectives from authors publishing in conservation biology journals. PLoS One 2015;10:e0132557. https://doi.org/10.1371/journal.pone.0132557.Search in Google Scholar PubMed PubMed Central

24. Wenneras, C, Wold, A. Nepotism and sexism in peer-review. Nature 1997;387:341–3. https://doi.org/10.1038/387341a0.Search in Google Scholar PubMed

25. Mebane, CA. Double-blind peer review is detrimental to scientific integrity. Environ Toxicol Chem 2025;44:318–23. https://doi.org/10.1093/etojnl/vgae046.Search in Google Scholar PubMed

26. Kovanis, M, Porcher, R, Ravaud, P, Trinquart, L. The global burden of journal peer review in the biomedical literature: strong imbalance in the collective enterprise. PLoS One 2016;11:e0166387. https://doi.org/10.1371/journal.pone.0166387.Search in Google Scholar PubMed PubMed Central

27. Tite, L, Schroter, S. Why do peer reviewers decline to review? A survey. J Epidemiol Community Health 2007;61:9–12. https://doi.org/10.1136/jech.2006.049817.Search in Google Scholar PubMed PubMed Central

28. van Dis, EAM, Bollen, J, Zuidema, W, van Rooij, R, Bockting, CL. ChatGPT: five priorities for research. Nature 2023;614:224–6. https://doi.org/10.1038/d41586-023-00288-7.Search in Google Scholar PubMed

29. Stokel-Walker, C, Van Noorden, R. What ChatGPT and generative AI mean for science. Nature 2023;614:214–16. https://doi.org/10.1038/d41586-023-00340-6.Search in Google Scholar PubMed

30. Gao, CA, Howard, FM, Markov, NS, Dyer, EC, Ramesh, S, Luo, Y, et al.. Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. npj Digit Med 2023;6: 75. https://doi.org/10.1038/s41746-023-00819-6.Search in Google Scholar PubMed PubMed Central

31. Thorp, HH. ChatGPT is fun, but not an author. Science 2023;379:313. https://doi.org/10.1126/science.adg7879.Search in Google Scholar PubMed

32. Tennant, JP, Ross-Hellauer, T. The limitations to our understanding of peer review. Res Integr Peer Rev 2020;5:6. https://doi.org/10.1186/s41073-020-00092-1.Search in Google Scholar PubMed PubMed Central

33. Else, H. Abstracts written by ChatGPT fool scientists. Nature 2023;613:423. https://doi.org/10.1038/d41586-023-00056-7.Search in Google Scholar PubMed

34. Liebrenz, M, Schleifer, R, Buadze, A, Bhugra, D, Smith, A. Generating scholarly content with ChatGPT: ethical challenges for medical publishing. Lancet Digit Health 2023;5:e105–6. https://doi.org/10.1016/S2589-7500(23)00019-5.Search in Google Scholar PubMed

35. Ferdush, J, Begum, M, Hossain, ST. ChatGPT and clinical decision support: scope, application, and limitations. Ann Biomed Eng 2024;52:1119–24. https://doi.org/10.1007/s10439-023-03329-4.Search in Google Scholar PubMed

36. Singhal, K, Azizi, S, Tu, T, Mahdavi, SS, Wei, J, Chung, HW, et al.. Large language models encode clinical knowledge. Nature. 2023;620:172-80. https://doi.org/10.1038/s41586-023-06291-2. Epub 2023 Jul 12. Erratum in: Nature. 2023;6207973:E19. 10.1038/s41586-023-06455-0.Search in Google Scholar PubMed PubMed Central

37. O’Brien, BC, Harris, IB, Beckman, TJ, Reed, DA, Cook, DA. Standards for reporting qualitative research: a synthesis of recommendations. Acad Med 2014;89:1245–51. https://doi.org/10.1097/ACM.0000000000000388.Search in Google Scholar PubMed

38. Morley, J, Machado, CCV, Burr, C, Cowls, J, Joshi, I, Taddeo, M, et al.. The ethics of AI in health care: a mapping review. Soc Sci Med 2020;260:113172. https://doi.org/10.1016/j.socscimed.2020.113172.Search in Google Scholar PubMed

39. Liu, R, Jecmen, S, Conitzer, V, Fang, F, Shah, NB. Testing for reviewer anchoring in peer review: a randomized controlled trial. PLoS One 2024;19:e0301111. https://doi.org/10.1371/journal.pone.0301111.Search in Google Scholar PubMed PubMed Central

40. Cheng, K, Sun, Z, Liu, X, Wu, H. Generative artificial intelligence is infiltrating peer review process. Crit Care 2024;28:149. https://doi.org/10.1186/s13054-024-04933-z.Search in Google Scholar PubMed PubMed Central

41. Kaissis, G, Ziller, A, Passerat-Palmbach, J, Ryffel, T, Usynin, D, Trask, A, et al.. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell 2020;2:305–15. https://doi.org/10.1038/s42256-020-0186-1.Search in Google Scholar

42. Raji, ID, Smart, A, White, RN, Mitchell, M, Gebru, T, Hutchinson, B, et al.. Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing. Proc ACM Conf Fairness Accountability Transparency 2020:33–44. https://doi.org/10.1145/3351095.3372873.Search in Google Scholar

43. BaHammam, AS. Peer review in the artificial intelligence era: a call for developing responsible integration guidelines. Nat Sci Sleep 2025;17:159–64. https://doi.org/10.2147/NSS.S513872.Search in Google Scholar PubMed PubMed Central

Published Online: 2025-12-02

© 2025 the author(s), published by De Gruyter, Berlin/Boston

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 3.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jpm-2025-0658/html
Scroll to top button