Home Lack-of-fit reduction in non-equilibrium thermodynamics applied to the Kac–Zwanzig model
Article
Licensed
Unlicensed Requires Authentication

Lack-of-fit reduction in non-equilibrium thermodynamics applied to the Kac–Zwanzig model

  • Kateřina Mladá , Martin Šípka and Michal Pavelka ORCID logo EMAIL logo
Published/Copyright: April 8, 2024

Abstract

Even when microscopic particle dynamics is purely mechanistic and thus reversible, the behavior of macroscopic systems composed of those particles is irreversible. In other words, effectively irreversible behavior emerges out of purely reversible dynamics when we do not observe all degrees of freedom of the detailed dynamics. But how can we find the irreversible macroscopic evolution equations when we only know the reversible microscopic equations? Using the so-called lack-of-fit reduction, which gives the reduced evolution as a sum of Hamiltonian and gradient dynamics, we reduce the purely Hamiltonian Kac–Zwanzig model to a set of irreversible evolution equations with no fitting parameters.


Corresponding author: Michal Pavelka, Faculty of Mathematics and Physics, Mathematical Institute, Charles University in Prague, Sokolovská 83, 186 75 Prague, Czech Republic, E-mail:

Funding source: Czech Science Foundation

Award Identifier / Grant number: 23-05736S

Acknowledgments

MP is a member of the Nečas center for Mathematical Modelling. We are grateful to Bruce Turkington for discussions on the lack-of-fit reduction. Moreover, we are grateful to Miroslav Grmela and Václav Klika for many discussions on non-equilibrium thermodynamics.

  1. Research ethics: Not applicable.

  2. Author contributions: KM made most of the calculations, MŠ wrote the original version of the simulation code, and MP wrote most of the text.

  3. Competing interests: No competing interests.

  4. Research funding: KM, MŠ, and MP were supported by Czech Science Foundation, project 23-05736S.

  5. Data availability: Not applicable.

References

[1] S. R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, New York, Dover Publications, 1984.Search in Google Scholar

[2] M. Pavelka, V. Klika, and M. Grmela, “Time reversal in nonequilibrium thermodynamics,” Phys. Rev. E, vol. 90, no. 062131, 2014, Art. no. 062131. https://doi.org/10.1103/physreve.90.062131.Search in Google Scholar PubMed

[3] E. T. Jaynes, “Delaware seminar in the foundation of Physics,” in Chapter Foundations of Probability Theory and Statistical Mechanics, M. Bunge, Ed., New York, Springer, 1967.10.1007/978-3-642-86102-4_6Search in Google Scholar

[4] G. W. Ford, M. Kac, and P. Mazur, “Statistical mechanics of assemblies of coupled oscillators,” J. Math. Phys., vol. 6, pp. 504–515, 1965. https://doi.org/10.1063/1.1704304.Search in Google Scholar

[5] R. Zwanzig, “Memory effects in irreversible thermodynamics,” Phys. Rev., vol. 124, no. 4, pp. 983–992, 1961. https://doi.org/10.1103/physrev.124.983.Search in Google Scholar

[6] H. C. Öttinger, Beyond Equilibrium Thermodynamics, New York, Wiley, 2005.10.1002/0471727903Search in Google Scholar

[7] H. Grabert, Projection Operator Techniques in Nonequilibrium Statistical Mechanics, Berlin, Heidelberg, Springer Tracts in Modern Physics. Springer, 2006.Search in Google Scholar

[8] G. Ariel and E. Vanden-Eijnden, “Testing transition state theory on Kac-Zwanzig model,” J. Stat. Phys., vol. 126, pp. 43–73, 2007. https://doi.org/10.1007/s10955-006-9165-0.Search in Google Scholar

[9] F. Witteveen, “The Mori-Zwanzig formalism and stochastic modelling of multiscale dynamical systems,” Master’s thesis, University of Amsterdam, 2016.Search in Google Scholar

[10] G. Ariel and E. Vanden-Eijnden, “A strong limit theorem in the Kac–Zwanzig model,” Nonlinearity, vol. 22, no. 1, pp. 145–162, 2008. https://doi.org/10.1088/0951-7715/22/1/008.Search in Google Scholar

[11] B. Turkington, “An optimization principle for deriving nonequilibrium statistical models of Hamiltonian dynamics,” J. Stat. Phys., vol. 152, pp. 569–597, 2013. https://doi.org/10.1007/s10955-013-0778-9.Search in Google Scholar

[12] B. Turkington and P. Plechac, “Best-fit quasi-equilibrium ensembles: a general approach to statistical closure of underresolved hamiltonian dynamics,” in Mathematics and Statistics Department Faculty Publication Series, vol. 1206, 2010.Search in Google Scholar

[13] B. Turkington, Q.-Y. Chen, and S. Thalabard, “Coarse-graining two-dimensional turbulence via dynamical optimization,” Nonlinearity, vol. 29, no. 10, pp. 2961–2989, 2016. https://doi.org/10.1088/0951-7715/29/10/2961.Search in Google Scholar

[14] R. Kleeman and B. E. Turkington, “A nonequilibrium statistical model of spectrally truncated Burgers-Hopf dynamics,” Commun. Pure Appl. Math., vol. 67, no. 12, pp. 1905–1946, 2014. https://doi.org/10.1002/cpa.21498.Search in Google Scholar

[15] S. Thalabard and B. Turkington, “Optimal response to non-equilibrium disturbances under truncated Burgers–Hopf dynamics,” J. Phys. A: Math. Theor., vol. 50, no. 17, p. 175502, 2017. https://doi.org/10.1088/1751-8121/aa651b.Search in Google Scholar

[16] J. Maack and B. Turkington, “Reduced models of point vortex systems,” Entropy, vol. 20, no. 12, p. 914, 2018. https://doi.org/10.3390/e20120914.Search in Google Scholar PubMed PubMed Central

[17] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math. Stat., vol. 22, no. 1, pp. 79–86, 1951. https://doi.org/10.1214/aoms/1177729694.Search in Google Scholar

[18] R. Kleeman, “A path integral formalism for non-equilibrium Hamiltonian statistical systems,” J Stat Phys, vol. 158, pp. 1271–1297, 2015. Available at: https://doi.org/10.1007/s10955-014-1149-x.Search in Google Scholar

[19] M. Pavelka, V. Klika, and M. Grmela, “Generalization of the dynamical lack-of-fit reduction,” J. Stat. Phys., vol. 181, no. 1, pp. 19–52, 2020. https://doi.org/10.1007/s10955-020-02563-7.Search in Google Scholar

[20] M. Grmela and H. C. Öttinger, “Dynamics and thermodynamics of complex fluids. I. Development of a general formalism,” Phys. Rev. E, vol. 56, no. 6, pp. 6620–6632, 1997. https://doi.org/10.1103/physreve.56.6620.Search in Google Scholar

[21] H. C. Öttinger and M. Grmela, “Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism,” Phys. Rev. E, vol. 56, no. 6, pp. 6633–6655, 1997. https://doi.org/10.1103/physreve.56.6633.Search in Google Scholar

[22] M. Pavelka, V. Klika, and M. Grmela, Multiscale Thermo-Dynamics, Berlin, De Gruyter, 2018.10.1515/9783110350951Search in Google Scholar

[23] A. Mielke, D. R. M. Renger, and M. A. Peletier, “A generalization of Onsager’s reciprocity relations to gradient flows with nonlinear mobility,” J. Non-Equilib. Thermodyn., vol. 41, no. 2, pp. 2016–2149, 2016. https://doi.org/10.1515/jnet-2015-0073.Search in Google Scholar

[24] R. Kraaij, A. Lazarescu, C. Maes, and M. Peletier, “Deriving generic from a generalized fluctuation symmetry,” J. Stat. Phys., vol. 170, no. 3, pp. 492–508, 2018. https://doi.org/10.1007/s10955-017-1941-5.Search in Google Scholar

[25] M. Grmela, V. Klika, and M. Pavelka, “Reductions and extensions in mesoscopic dynamics,” Phys. Rev. E, vol. 92, no. 032111, 2015, Art. no. 032111. https://doi.org/10.1103/physreve.92.032111.Search in Google Scholar

[26] A. N. Gorban and I. V. Karlin, Invariant Manifolds for Physical and Chemical Kinetics. Lecture Notes in Physics, Berlin, Heidelberg, Springer, 2005.10.1007/b98103Search in Google Scholar

[27] I. M. Gelfand and S. V. Fomin, Calculus of Variations. Dover Books on Mathematics, Mineola, New York, Dover Publications, 2012.Search in Google Scholar

[28] K. Mladá, “Emergence of irreversible dynamics by the lack-of-fit reduction,” Master’s thesis, Charles University, Faculty of Mathematics and Physics, 2023.Search in Google Scholar

[29] C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, nos. 379–423, pp. 623–656, 1948. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x.Search in Google Scholar

[30] L. D. Landau and E. M. Lifschitz, Statistical Physics. Number Pt. 1 in Course of Theoretical Physics, Oxford, Pergamon Press, 1969.Search in Google Scholar

[31] H. B. Callen, Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics, New York, Wiley, 1960.10.1119/1.1935945Search in Google Scholar

[32] V. Kučera, “A review of the matrix Riccati equation,” Kybernetika, vol. 09, no. 1, pp. 42–61, 1973.Search in Google Scholar

[33] R. S. Bucy, “Global theory of the riccati equation,” J. Comput. Syst. Sci., vol. 1, no. 4, pp. 349–361, 1967. https://doi.org/10.1016/s0022-0000(67)80025-4.Search in Google Scholar

[34] D. Vaughan, “A negative exponential solution for the matrix Riccati equation,” IEEE Trans. Autom. Control, vol. 14, no. 1, pp. 72–75, 1969. https://doi.org/10.1109/tac.1969.1099117.Search in Google Scholar

[35] M. Pavelka, V. Klika, O. Esen, and M. Grmela, “A hierarchy of Poisson brackets in non-equilibrium thermodynamics,” Phys. D, vol. 335, pp. 54–69, 2016. https://doi.org/10.1016/j.physd.2016.06.011.Search in Google Scholar

[36] H. C. Öttinger, M. A. Peletier, and A. Montefusco, “A framework of nonequilibrium statistical mechanics. I. Role and types of fluctuations,” J. Non-Equilib. Thermodyn., vol. 46, no. 1, pp. 1–13, 2021. https://doi.org/10.1515/jnet-2020-0068.Search in Google Scholar

[37] A. Montefusco, M. A. Peletier, and H. C. Öttinger, “A framework of nonequilibrium statistical mechanics. II. Coarse-graining,” J. Non-Equilib. Thermodyn., vol. 46, no. 1, pp. 15–33, 2021. https://doi.org/10.1515/jnet-2020-0069.Search in Google Scholar

Received: 2023-11-15
Accepted: 2024-03-08
Published Online: 2024-04-08
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2023-0110/html
Scroll to top button