Abstract
Two groups
Funding source: Marsden Fund
Award Identifier / Grant number: UOA1824
Funding statement: The authors gratefully acknowledge the financial support of the Marsden Fund UOA1824 and the University of Auckland.
Acknowledgements
We thank the anonymous referee for their helpful comments.
-
Communicated by: Michael Giudici
References
[1] P. J. Cameron, Permutation groups with multiply transitive suborbits, Proc. Lond. Math. Soc. (3) 25 (1972), 427–440. 10.1112/plms/s3-25.3.427Search in Google Scholar
[2] J. B. Fawcett, M. Giudici, C. H. Li, C. E. Praeger, G. Royle and G. Verret, Primitive permutation groups with a suborbit of length 5 and vertex-primitive graphs of valency 5, J. Combin. Theory Ser. A 157 (2018), 247–266. 10.1016/j.jcta.2018.02.008Search in Google Scholar
[3] M. Giudici, S. P. Glasby, C. H. Li and G. Verret, Arc-transitive digraphs with quasiprimitive local actions, J. Pure Appl. Algebra 223 (2019), no. 3, 1217–1226. 10.1016/j.jpaa.2018.06.002Search in Google Scholar
[4] D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377–406. 10.2307/1971203Search in Google Scholar
[5] E. I. Khukhro and V. D. Mazurov, The Kourovka Notebook. Unsolved Problems in Group Theory, Sobolev Institute of Mathematics, Novosibirsk, 2022. Search in Google Scholar
[6] W. Knapp, On the point stabilizer in a primitive permutation group, Math. Z. 133 (1973), 137–168. 10.1007/BF01237901Search in Google Scholar
[7] H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, Universitext, Springer, New York, 2004. 10.1007/b97433Search in Google Scholar
[8] C. H. Li, Z. P. Lu and D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra 279 (2004), no. 2, 749–770. 10.1016/j.jalgebra.2004.03.005Search in Google Scholar
[9] W. L. Quirin, Primitive permutation groups with small orbitals, Math. Z. 122 (1971), 267–274. 10.1007/BF01109920Search in Google Scholar
[10] C. C. Sims, Graphs and finite permutation groups, Math. Z. 95 (1967), 76–86. 10.1007/BF01117534Search in Google Scholar
[11] R. M. Weiss, Über symmetrische Graphen, deren Valenz eine Primzahl ist, Math. Z. 136 (1974), 277–278. 10.1007/BF01214131Search in Google Scholar
[12] H. Wielandt, Eine Verallgemeinerung der invarianten Untergruppen, Math. Z. 45 (1939), no. 1, 209–244. 10.1007/BF01580283Search in Google Scholar
© 2026 Walter de Gruyter GmbH, Berlin/Boston